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Absence of a Sharp Glass Transition in Mode Coupling Theory
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A self-consistent mode coupling model for supercooled fluids is derived from fluctuating nonlinear hy-
drodynamics (extended to short wavelengths) with attention to detailed balance constraints. The sharp
glass transition predicted by mode coupling models based only on pressure nonlinearities does not occur
here. Instead, the long time asymptotic behavior of the density autocorrelation function is determined
by additional nonlinearities imposed by the detailed balance constraints.

PACS numbers: 64.70.Pf, 66.20.+d

The experimentally observed transition of a super-
cooled fluid to an amorphous solid is generically referred
to as a glass transition. A most appealing signature of
such a transition would be the divergence of a charac-
teristic time for structural relaxation at a precise critical
temperature or pressure. An order parameter for struc-
tural relaxation is the time dependent mass density auto-
correlation function, (Sp(r, t)8p(r', 0)), in the metastable
supercooled fluid state. At high temperatures this func-
tion decays to zero for long times, representing config-
urational relaxation to the metastable fluid state. Howev-
er, if there is a diverging structural relaxation time below
some critical temperature, then spontaneous fluctuations
would remain finite for infinite times ("broken ergodici-
ty" or complete structural arrest).

A mechanism for structural arrest was identified eight
years ago [1,2] and associated with the glass transition.
The underlying theoretical model and subsequent versions
are generally referred to as mode coupling models [3]. In
recent years the predictions of such models, particularly
scaling laws valid asymptotically close to the transition
point, have been compared with a number of spectroscop-
ic experiments [4] and satisfactory agreement is observed
in many cases. However, the theory predicts an ideal
glass transition for simple atomic systems at a tempera-
ture for which computer simulation results are still decay-
ing; also, the most recent comparisons of these models
with experiment show significant deviations from com-
plete structural arrest [5]. These considerations suggest
that the mode coupling effects are relevant but that the
sharp singUlarity is not correct. Evidently, some assump-
tions of the original mode coupling model fail close to the
predicted transition ~here a new asymptotic dynamics
appears. Only two possibilities for improved mode cou-
pling theories have been suggested thus far, one based on
kinetic theory [6] and the other based on fiuctuating
Navier-Stokes equations [7]. Each entails plausible but
uncontrolled approximations and the results are quite

diITerent in the long wavelength regime where both can
be compared. In spite of its successes, the current status
of mode coupling theory and the detailed form of this
theory for long times remains inconclusive and contradic-
tory.

In this Letter we present new quantitative results that
show the important role played by detailed balance condi-
tions in controlling complete structural arrest in mode
coupling theory. Our objective is to construct and ana-
lyze a mode coupling model that retains both the physical
mechanism associated with structural arrest (density non-
linearities) and the mathematical structure imposed by
the underlying microscopic dynamics (detailed balance).
There are three parts to the analysis. The first is a
description of IIuctuating hydrodynamics (Langevin
equations) extended to short wavelengths, to account for
mode coupling eAects at all length scales. These equa-
tions are identified in a form that makes explicit certain
"detailed balance" conditions. The second part of our
analysis concerns approximations to the equations. The
mode coupling mechanism for the ideal glass transition is
associated with the nonlinear dependence of the pressure
on the mass density. A primary observation of our work
is that detailed balance places strong constraints on the
form of the Langevin equations: Consideration of density
nonlinearities due to the pressure in the equation for the
momentum field requires specific density-momentum field
bilinearities in the continuity equation as well. These ad-
ditional bilinearities imposed by detailed balance elimi-
nate the structural arrest predicted by mode coupling
theories with only the pressure nonlinearities. In addi-
tion, we exploit an exact relationship between correlation
functions and response functions by considering a Gauss-
ian stationary state. The result of these two parts of the
analysis is an action with cubic order nonlinearity, pro-
viding a nontrivial theoretical description of density fluc-
tuations that includes manifestly the mode coupling
mechanism of interest and a proper stationary state.
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a, (r, t)+K, (ri[a(t)]) =g, (r, t),
8t

(g, (r, t)(p(r', t')) =2k' TI,p(r —r')6(t —t'), (2)

where ap(r, t) =p(r, t) is the mass density and a;(r, t)
=g;(r, t) are components of the momentum density (here
and below Greek indices have the range 0-3 while Latin
indices have the range 1-3). The nonlinear functions

K, (r i [a (t ) ] ) characterize the deterministic equations,
and (,(r, t) is a random force representing Gaussian

At this point questions can be posed in a controlled and

precise fashion. Is there an ideal glass transition'? If not,
what is the mechanism responsible for asymptotic struc-
tural relaxation? In what respect is the theory with an
ideal transition approximately correct? We answer these
questions within the context of renormalized perturbation
theory, which is the third part of our analysis: a deter-
mination of the closed equations for the density auto-
correlation function to one loop order. Our primary re-
sult is that there is no ideal glass transition; instead, the
asymptotic dynamics is determined from the density-
momentum field bilinearities imposed by detailed bal-
ance. However, there appear to be intermediate time
scales for which the original mode coupling models are
approximately correct. These results are consistent with

the schematic scenario of Refs. [5] and [6]; our contribu-
tion is to identify the origin of this new asymptotic dy-
namics as due to detailed balance, and to express this in

terms of microscopic parameters.
Fluctuating hydrodynamic equations and their origins

in nonequilibrium statistical mechanics have been dis-
cussed elsewhere [8]. Here, we consider only the mass
and momentum density equations and neglect any eAects
associated with temperature fluctuations. The stochastic
equations we consider are given by

a;(r)a;(r)
F[a] =— dr ' ' +F'[ap] .

2 " ap(r)
(4)

Here F[a] is a "free energy" that is related to the station-
ary probability density according to P[a] ~exp( —F[a]/
kBT). The first term represents the kinetic energy and
the second term, F'[ap], is the free energy functional of
the fluid locally at rest depending only on the mass densi-
ty and containing all information on the static structure
of the system. Finally, the matrix R in (3) is antisym-
metric, R,p(r, r'i[a]) = —Rp, (r', ri[a]), and represents
the reversible (Euler) dynamics,

Rpp(r, r'i [a] ) =0,
Rp; (r, r'i [a] ) = t);ap(r) 6(r —r') = R;p(r', ri [a]),
R).(r, r'i [a] ) = t)i a; (r, t )6(r —r') + ai (r, t )8;6 (r —r') .

(5)

We will refer to any Langevin equation of the form (3),
with matrices R and I having the aforementioned sym-
metry properties, as satisfying detailed balance condi-
tions. Equations (1)-(5) provide a closed set of stochas-
tic Langevin equations from which the density fluctua-
tions can be determined.

A formal path integral solution to these equations can
be given in terms of the action [10]

white noise with zero average. The "noise matrix" is
symmetric, I,p(r —r') =I p, (r' —r), and explicitly given
by I,p

=0 for a or P =0 and I; (r) = —8;i yL(r)
—(8;JV —8;z)y (r), where y and y are two scalar
viscosity kernels. Detailed balance conditions associated
with microscopic time reversal symmetry lead to a canon-
ical form for K,(ri [a(t)]) [9]:

K, (r i [a] ) = dr'[R, p(r, r'i [a] ) +I,p(r —r') ]
~F [a]

Q

Sap r'

(3)

Q OO

2 ja, aj =„dtJ dra, (r, t) a, (r, t ) +K,(ri [a (t) ] ) —kg T dr'I, p(r —r') ap(r', t )
t (6)

In practice, this field-theoretical formalism [11] is useful
when the action is of polynomial order or when a small
parameter is available for ordering a perturbation expan-
sion. There are two serious technical problems in the
present case: (1) The action is not of polynomial order
due to dependences on 1/p(r, t) arising from the free en-
ergy (4), and expansions in bp(r, t) do not preserve de-
tailed balance order by order. (2) The equations for the
correlation functions are coupled to those for a second
set, the response functions, leading to an intractable com-
plexity of nonlinear integro-diA'erential equations for
eight fields even at one loop order.

These problems are addressed in the following manner.
Approximations are restricted to retain both the non-

linear mass density dependence associated with the ideal
transition (arising from the pressure term R;pSF'/Sap) to
quadratic order, and the above structure imposed by de-
tailed balance (the term Rp;rlF/Sa;). Furthermore, the
problem with coupling to response functions is solved by
using a Gaussian approximation to the stationary state in
which case there are exact "fluctuation-dissipation" rela-
tions expressing the response functions in terms of the
correlation functions [12]. In the equilibrium fluid state
the free energy has a minimum with g =0 and a uniform
average density po. We assume this fluid branch persists
as a local minimum in the metastable state and restrict
our attention to states near this minimum,

1 f
F[a] drg (r)+ dr dr'[6(r —r') —nc (i r —r'i ) leap(r) 6p(r'),

2pp " 2mPpp " (7)
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where m is the mass per particle, n =pp/m is the average
density, and c(r) is the direct correlation function of the
quid at density po. Furthermore, in the interest of simpli-
city, we retain only the density dependence of R ~, thus
setting R;z 0. With no further approximations, the re-
sulting action has a cubic order nonlinearity, satisfies de-
tailed balance, and has a Gaussian stationary state.

We note that this expansion of the free energy about
the minimum at g=0 breaks Galilean invariance and
hence the resulting approximate hydrodynamic equations
are valid only in the rest frame. It is well known that
without exact Galilean invariance the mass Aux is no
longer exactly equal to the momentum density. Conse-
quently, the approximate continuity equation has addi-
tional nonlinearities reflecting this change in the mass
Aux; their form is fixed by the detailed balance condi-
tions. Of course, global conservation of particle number
is preserved.

It is now a straightforward but lengthy exercise to ob-
tain a closed set of equations for the correlation functions
using the method of [11]. In this Letter we quote only

C, (k, t) =- —t
. 1

pp mS k

i 1/2

k, Cip(k, t),

Cz(k, t) = k; kj C;) (k, t ),
Po

C3(k, t) —= (8J —k; k) )Ct(k, t ),
Po

where S(k) is the static structure factor. The Dyson
equations for C are expressed most compactly in terms
of the dimensionless Laplace transforms, C,(k, z*)
= Q(k) fdt e "C,(k, t) where D(k)—:k [mS(k)/
kttT] ' and z* —=z/Q(k). Then,

the results. It is convenient to use a Fourier representa-
tion of the correlation functions. Separating the momen-
tum into longitudinal and transverse components allows
reduction of these correlation functions to four dimen-
sionless scalar functions determined from C,tj(k, t) = V
x (8a, (k, t )Bay( —k, 0)):

Cp(k, t ) —= Coo(k, t ),1

mppS k

[1 —Mi(k, z*)]
Co(k, z*)= z*+Mo(k, z*)+

z *+cr (k) +M2(k, z)

C~(k, z*) =[1—M~(k, z*)][z*+cr (k)+M2(k, z*)] 'Cp(k, z*),
C2(k, z*)= [z*+Mp(k, z*)][z*+a' (k)+M2(k, z*)] 'Cp(k, z*),
C (k, z*)=[z*+a (k)+M (k, z*)]

(9)

(10)

(i 2)

and a (k)=[k /poO(ik)]fdre'"'y ' (r) The sel.f-energies determined from renormalized perturbation theory to
one loop order are bilinear functionals of the correlation functions, of the form

M, (k, z*) =(2tr) 0 ' dte " dqA, p„(kq k —q)C (pqt)C, (!k—q!,t) .

A summation over P and y is implied. The coupling ker-
nels have the symmetry, A,pr(k;q~, q2) =A,„p(k;q2,q~),
and are given by

Aopz(k;q, p) =— p;p~U; (q, p)UJ (q, p),

App3(k;q, p) =—
(

(6;, —p;p, )U;"'(q, p)U, '(q, p),

Ao~~(kq p) = — qp, U~ '(q, p)U, '"(q,p),is( )s( )

A~p~(k;q, p) =— q
k;p&U;

' (q, p)Ut (q p)
i s( )is( ) - .

is(I )

A2pp(k;q, p) =—S(q)S(p)k;k&U; ' (q, p)UJ'~(q, p),

A3pp(k;q, p) = —S(q)S(p)(B~ —k;k~) U~'~(q, p) U~ '~(q, p) .

(i 4)

The elements not displayed are either zero or follow from
the symmetry quoted above. Moreover, the vertices

!
U; ' are defined by U; '

(q, p) =U;(q, p)+U; (q, p),
U; (qp) =(pp/k&T) ' (q;+p;), U(qp):——(poke T/
m )'t [q;c(q)+p;c(p)]. The Dyson equations (9)-(12)
and the self-energy equations (13) provide a closed set of
equations to determine the correlation functions and are
the main results of this paper.

The mode coupling eA'ects arise from two quadratic
nonlinearities of the Langevin equation. The first, with
vertex U; ', is due to quadratic density dependence of the
pressure in the momentum equation while the second,
with vertex U;, is a density-momentum bilinearity in
the density equation required by detailed balance, as indi-
cated above Eq. (7). The first nonlinearitity is expected
to provide the physical origin of possible structural arrest
due to density mode coupling, so we consider first neglect-
ing all contributions from U; . In this case the self-
energies Mo and Mi vanish, U; U;, and the equations

~ (~)

of Ref. [2] are regained. In particular, for temperatures
below a critical value, the amplitude A200 is sufficiently
large that M2(k, z*) acquires a pole at z* =0 and, con-
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sequently, Co(k, z*) also has such a pole. This corre-
sponds to complete structural arrest and is the signature
of an ideal glass transition.

More generally, the full set of equations including the
nonlinearities due to detailed balance does not lead to an
ideal glass transition. Qualitatively, as z* 0, Mo(k,
z*) and M&(k, z*) do not diverge since they are deter-
mined from density-momentum correlation functions
which decay even if there is structural arrest. Converse-
ly, Mz(k, z*) is becoming large. Thus for very small z*,
Co(k, z*) has a simple pole located approximately at
z* = —Mo(k, O). However, the ideal glass transition
(pole at z * =0) is now precluded by the fact that
Mo(k, 0)eO. Instead of leading to structural arrest the
correlation function behaves asymptotically as Co(k, t)
-exp[ —Mp(k, 0)t*],with t* = Q(k)t.

Several final comments are oAered as a summary of the
current work.

(1) A model Langevin equation has been proposed here
on the basis of retaining the density mode coupling mech-
anism, detailed balance conditions, and a quadratic free
energy functional. Within the context of this model and
one loop perturbation theory, we find no ideal glass tran-
sition although the mode coupling mechanism associated
with U; ' can generate large relaxation times. The ideal
transition of the simple mode coupling theory is regained
if the nonlinearity associated with U; is neglected.
Since detailed balance conditions prohibit such neglect in

general, we conclude that a finite mode coupling theory
requires attention to these conditions.

(2) The approximation of a quadratic free energy func-
tional provides a "fluctuation-dissipation relation" that
allows exact elimination of response functions in terms of
correlation functions [12]. Even at one loop order pertur-
bation theory, the formalism becomes intractable without
this simplification (unless additional uncontrolled approx-
imations are introduced).

(3) It is possible that a number of features of the sim-

ple mode coupling model with U; =0 may be approxi-
mately correct. The scenario has been described in Refs.
[5] and [6], where it is assumed that the ultimate decay
of the correlation functions has a very large time scale
(small Mo) so that the simple mode coupling model ap-
plies for a range of intermediate times. To explore this
possibility, we have estimated the self-energies using a
model structure factor and find that the amplitude of M2
is more than an order of magnitude larger than the other
self-energies. This is consistent with the above scenario
envisioned in Refs. [5] and [6], and explored numerically
recently using Mo as an adjustable parameter (the first
work of Ref. [5]).

(4) Previous studies of finite mode coupling models
[6,7] lead to qualitatively similar results. The mode cou-
pling theory of Ref. [6] is obtained from a formal kinetic

theory, projected onto density and momentum fields. The
resulting asymptotic behavior is similar to (10) with an
important qualitative diAerence at long wavelengths.
Both the result obtained here and that of Ref. [7] predict
asymptotic diAusive decay at long times, while that of
Ref. [6] is exponential at long wavelengths. Hence the
existing finite mode coupling theories are not equivalent.

(5) In Refs. [5] and [6] the asymptotic dynamics due
to Mo has been called "hopping dynamics" and associat-
ed with activated processes. This terminology is used in

several diferent contexts —either single particle transi-
tions between localized sites, or system transitions be-
tween diAerent local free energy minima. None of the
existing finite mode coupling models entails hopping in
this latter sense; all assume implicitly or explicitly (as
here) expansions about a single fluid-type free energy
minimum.
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