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A new type of finite-amplitude traveling or standing wave with an exact sinusoidal form and a short
commensurate wavelength is predicted to exist in lattices with cubic and/or quartic anharmonic potential
between any arbitrary number of nearest and non-nearest neighbors. Fast traveling nonlinear sinusoidal
waves (NSW) can generate sinusoidal lattice solitons. Superposition of two NSW or sinusoidal solitons
propagating in opposite directions can result in the formation of an extended or a localized standing-
wave eigenmode. New exact solutions for localized standing-wave structures are found within a rigorous
discrete-lattice approach.

PACS numbers: 63.70.+h, 63.20.Pw, 63.20.Ry

The only known exact solution of nonlinear discrete-
lattice classical potential equations of motion concerns
the case of the lattice with exponential nearest-neighbor
anharmonic potential (Toda lattice) [1]. The exact
periodic solution in the Toda lattice has the form of a
cnoidal wave with arbitrary wavelength, which trans-
forms into a sinusoidal wave only in the small-amplitude
limit. Sinusoidal waves, being the fundamental low-lying
excitations (phonon eigenmodes) of the lattice, are par-
ticularly important in its dynamics. In this Letter we
present an exact solution of nonlinear discrete-lattice
equations of motion of the one-dimensional (1D) anhar-
monic lattice in the form of finite-amplitude traveling or
standing sinusoidal waves with a short and commensurate
wavelength. The lattice is characterized by harmonic and
cubic and/or quartic anharmonic interparticle potential.
The case of the lattice with nearest-neighbor harmonic
and cubic or quartic anharmonic potential corresponds to
the famous I ermi-Pasta-Ulam model, for which the re-
currence phenomenon in the nonlinear motion was re-
vealed for the first time in computer simulations [2]. Be-
cause of the commensurability of the characteristic wave-
length with the lattice period, nonlinear sinusoidal waves
(NSW) are exact eigenmodes of a 1D lattice with cubic
and/or quartic anharmonic potential between any arbi-
trary number of nearest and non-nearest neighbors. In
anharmonic lattices of higher dimensionality, plane NSW
can propagate in certain directions (of high symmetry).
Contrary to the linear sinusoidal waves, the frequency of
NSW depends on the amplitude, while the wave number
is determined (fixed) by the anharmonic interactions.
Therefore large-amplitude vibrational eigenstates of the
anharmonic lattice can be classified with the help of
NSW with amplitude-dependent frequency (and velocity)
and a given wavelength, and hence NSW can contribute
to the specific heat and energy transport in the system.
NSW with velocity larger than the harmonic wave veloci-
ty can generate sinusoidal lattice solitons of substantially
difrerent form than that of solitons of the Korteweg-de
Vries (KdV) (or modified KdV equation), which de-
scribes the weakly nonlinear long-wavelength dynamics of
the lattice. Strongly localized solitary "peaks" propaga-

ting at speeds larger than the harmonic wave speed were
revealed in computer simulations of anharmonic vibra-
tions of one- and two-dimensional lattices [3], while re-
cent analytical and numerical studies [4,5] concern only
the discrete-lattice solitons moving with speeds much
lower than the harmonic wave speed. Superposition of
two NSW propagating in opposite directions with equal
amplitudes can result in the formation of a stable
standing-wave extended eigenmode, while superposition
(during resonant head-on collision) of two sinusoidal soli-
tary waves can result in the formation of a localized non-
linear model. Such a phenomenon, which is quite unusu-
al for the behavior of solitary waves in completely inte-
grable systems where solitons restore their coherent
shapes after colliding [6,7], was also revealed in computer
simulations [3]. New exact solutions for strongly local-
ized dark-profile standing-wave lattice structures are
found. We claim that the existence of NSVV in anhar-
monic lattices is not occasional since localized short-
wavelength lattice vibrational modes with sinusoidal en-
velope and small amplitude-independent spatial width are
exact solutions of the continuous envelope-function equa-
tion with the nonlinear gradient terms [8]. Solitary
waves with compact support (compactons) and sinusoidal
profile were recently obtained as the solutions of the con-
tinuous KdV-like equations with nonlinear dispersion [9].
[Continuous KdV-like equations with nonlinear disper-
sion, which represent the corresponding long-wavelength
limit of the below discrete-lattice equations (2), also have
exact solutions in the form of NSW [10]1.

We start from the model of a monatomic periodic
chain with anharmonic potential of the order r =3 and/or
r =4 between 6 ~ l nearest and non-nearest neighbors,

U=g g g —It, ,(u„+,—u. )',l

n y=2b=1

where u„ is the (real scalar) displacement of the nth par-
ticle from its equilibrium position and Kyq are harmonic
(y=2) and anharmonic force constants. The lowest or-
der potential describing the anharmonicity of the longitu-
dinal or pure transverse motion in a centrosymmetric lo
lattice corresponds to r=3 or r=4, respectively. From
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mu„= g g K„~[(u„+, u—„)' ' —(u„—u„g) " 'l .
y 2b 1

(2)

We are looking for the solution of Eqs. (2) for the dis-
placements u„(or relative displacements r„—=u„+i —u„)
in the form of traveling (shifted) sinusoidal waves:

=2 cos(kna —cot +p) +8 .r„ (3)

In the lattice with quartic anharmonic nearest-
neighbor interaction (ANNI), NSW with u„pattern (3)
are exact solutions of Eqs. (2) with the amplitude-
dependent frequency t0 and definite wave number k:

Eq. (I) we obtain the nonlinear discrete-lattice equations
of motion:

Using trigonometric identities, it can be easily shown that
linear superposition of two NSW with u„patterns (3)
propagating in the same direction with B=O, equal am-
plitudes 2 and different initial phases p~ 2 is also an exact
eigenmode with the same amplitude 8, if the phase
difference p~

—
p2 is equal to 2tt(n ~ —,

' tt) with an integer
n.; i.e. , if it coincides with one of the allowed values of ka
given by Eq. (5). Then, using the identity u„+q —u„~8—

I=~y=or„+y and the above property of superposition of
two NSW, it can be shown that NSW with r, pattern (3)
are exact eigenmodes of Eqs. (2) with ~ka~ = —,

'
tr (or

~ka~ =x) in the lattice with cubic+quartic (or cubic)
anharmonic interaction between any arbitrary number
6~ 1 of nearest and non-nearest neighbors.

We can consider a "small-amplitude modulation" of
NSW (3) in the form

mco =3K2+ (27/4)K43 (4) = 2 cos(kna —cot+&)
rn

K4A sin (2 ka)[sin (2 ka) —3cos (2 ka)1=0, (5) +gb; cos(k;na —co;t+P;)+8, (7)
where K„—=K„ l. Equation (5) is obtained from requiring
the absence of third (and correspondingly higher) har-
monic contribution to NSW [3]. In the reduced-
Brillouin-zone picture, we find the "allowed" wave nurn-

bers: ka = ~ 3 x. In a 10 lattice with harmonic and
quartic anharmonic interaction between 6 ~ 2 non-
nearest neighbors, parameter ka in Eq. (5) should be re-
placed by the parameter ka6, and the corresponding
equation is also satisfied by the above values of the wave
number k. Therefore NSW (3) with a commensurate
wavelength k =3a are exact eigenmodes of 1D lattice (I)
with harmonic and quartic anharmonic interaction be-
tween any arbitrary number of nearest and non-nearest
(8) 1) neighbors. For wavelengths different from the
above one, the term proportional to the left-hand side of
Eq. (5) determines the generation of the higher harmon-
ics of NSW (3). Therefore the generation is strongly
suppressed for NSW with wave numbers close to the al-
lowed ones.

NSW with u„pattern (3), edge Brillouin-zone wave-

length ka = ~ tt, and (amplitude-independent) upper
cutoff frequency of harmonic oscillations (mai =4K' for
6 = I ) are exact solutions of Eqs. (2) in a 1 D lattice with
cubic anharmonic interaction between any arbitrary num-
ber of nearest and non-nearest neighbors.

NSW with r„pattern (3) and frequency

where b; «A, k;, and co; are (small) amplitudes, wave
numbers, and frequencies of modulation. Then from Eqs.
(2) we can find that "linear" sinusoidal waves (7) (with
amplitudes b;) are lattice modes with the Goldstone
harmonic-wave dispersion relation with the force constant
renormalized by NSW (3). For instance, in the lattice
with quartic ANNI, the ith linear sinusoidal wave with
u„pattern (7) and k, = —,

'
tr has spectrum mco;

=4sin ( 2 k;a) [K2+ (9/4)K4A ]. In the lattice with
cubic+quartic ANNI, the ith linear sinusoidal wave with
r„pattern (7) has a spectrum of the form similar to Eq.
(6) (and with the same notation):

mai; =4 sin ( & k;a ) [K2+2KiB

+K4[38 +A (1+ ~ cos(ka))]}.

Therefore finite-amplitude NSW (3), (4), and (6) with
& 0 are stable eigenmodes of an anharmonic chain

(1). Moreover, they represent a new basis for the
classification of the vibrational eigenstates of the system.

In the lattice solitary wave, relative displacements of
neighboring particles r„(as well as displacements u„or
values h, u„=u —u„, where u is the finite displacement
at infinity; see below) vanish at both infinities according
to the exponential law, the inverse decay length rc in
which is determined by the linear part of Eqs. (2):

mai = 4sin (ka/2)

&& [K2+2K38+K4[38 +A (I+ ~ cos(ka))]]
r„~e p[x~ x(na ct)], —

4K2sinh (xa/2) =mc x (9)
(6)

are exact eigenmodes of Eqs. (2) for ka =+' x and arbi-
trary 8 in the chain with cubic ANNI (K4 =0), and for
ka = ~ —', tt, 8 = —K3/3K4 in the chain with cubic
+quartic ANNI (or with quartic ANNI, K3=0,8 =0).

where c is a velocity of the lattice solitary wave. Equa-
tion (9) has a solution for the real x. only in the case
when velocity c is larger than the harmonic wave velocity:
c) JK2a /m. So far as the (phase) velocity c =—ro/k of
NSW (3) depends, in the general case, on the amplitude
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A (or 8), the form of the large-amplitude lattice solitons
can be obtained by matching the sinusoidal r„pattern (3)
of "supersonic" NSW (near corresponding zeros) with
exponential tails (8). The matching can be performed by
solving Eq. (2) for the particles (with u„«A or Au„«A)
at the moving "border points" between the sinusoidal r„
pattern (3) and (small-amplitude) tails (8). For this con-
struction it is essential that fast lattice solitary waves
(with mc )&K2a ) have very short exponential tails:
tea&)1 [see Eq. (9)]. Therefore large-amplitude solitary
waves in the anharmonic lattice ( I ) actually have
sinusoidal form.

In the lattice with hard quartic ANN! (K4& 0), any
half period (between two successive zeros) of the cosine
r„pattern (3) with ka = —', tr, mcus =3K2+ 4 K4A, and
8=0 corresponds to a half period (between zero and suc-
cessive maximum) of the cosine u„pattern (3) with the
amplitudes A'=A/v3 and ~8'~ ~ A'. Thus a lattice soli-
tary wave, which is described by a half period (or by a
period) of the cosine r„pattern (3) with 8=0, —tr/2
& kna —cot + p & + tc/2 (or —tr/2 & kna —cot +P & 3tr/
2), corresponds, e.g. , to a steplike with u =0 and
u~ =2A/J3 (or a pulselike with u — =u+ =0) cosine
u„pattern (3): u„=u ~ cos [(kna —cot+/')/2], —tr

& kna —kct+p' & 0 (or —tr & kna —cot+&' & +tr).
The former (steplike) solitary wave represents the gen-
eralization of the soliton of the (weakly nonlinear)
modified KdV equation in the limit of large amplitudes,
when mc »K22 and the soliton has small amplitude-
independent spatial width A =3a/2. The latter (pulse-
like) lattice solitary wave has no counterpart in the weak-
ly nonlinear limit. These most strongly localized fast soli-
tary waves can be generalized to the traveling localized
modes with three and more half periods of the cosine r„
pattern (3).

In the lattice with cubic ANNI, large-amplitude soli-
tary waves can be obtained by matching the cosine
r„pattern (3) of supersonic NSW (with ka =tr,
mt' =4K2+8K38, K38»K2 and A ~ ~B~) with short
exponential tails (8). Then the one-pulse r„pattern
[r„=A cos [(kna —kct + p)/2], —tr & kna —kct + p & tr,
B=A] corresponds to a one step with u — =0 and
u+ =A cosine u„pattern: u„=A cos [(kna —kct
+ P')/2], —tr & kna —kct + P' & 0. This solitary wave
represents the generalization of the soliton of the KdV
equation in the large-amplitude limit, when mc »K2a
and a steplike distribution of the lattice displacements u„
is located on an interparticle spacing a. The two-pulse r„
pattern corresponds to a two-step u„distribution (be-
tween u — =0 and u+ =2A), etc. In the lattice with
cubic+hard quartic ANN I, large-amplitude solitary
waves with similar u„patterns can be obtained by match-
ing the cosine r„pattern (3) of supersonic NSW [with
ka = —', tr, mco =3K2+ (9/4)K4A —K3/K4, 8 = —K3/
3K4 and arbitrary amplitude A ~ ~8~] with short ex-
ponential tails (8).

We can consider a sinusoidal standing-wave mode as a
superposition of two NSW (3) propagating in the oppo-
site directions with equal amplitudes 2:

ug
= A(t)cos(kna + a) + 8 .r„ (10)

In the lattice with cubI'c anharmonicity, the mode with u„
or r„pattern (10) is an exact solution of Eqs. (2) with
~ka

~
=tr, arbitrary a, and A(t) =A cos(cot) (where, e.g. ,

mao =4K2 or men =4K2+8K3B in the lattice with the
nearest-neighbor interaction). In the lattice with quartic
(or cubic+quartic) anharmonicity, sinusoidal modes (10)
are exact solutions of Eqs. (2) with ~ka

~

= —', tr and arbi-
trary a, and also with ~ka

~
=tr or ~ka ~

=
2 tc and definite

initial phase a, which is determined from the requirement
cos[3(kna+a)] = +'cos(kna+a) (e.g. , a =0). Time
dependence of the amplitude A(t) of these modes is

governed by the eA'ective equation of motion of a decou-
pled (single) anharmonic oscillator. Thus we find the
equations m A = —2K2A —2K4A, mA = —3K2A
—(27/4)K4A, and mA= —4K2A —16K4A for the
modes with u„pattern (10) and ka =

2 tr, ka = —', tr, and
ka =z in the lattice with quartic ANNI. For the mode
with r„pattern (10) and ka =

3 tc, 8 = —K3/3K4, we find

the equation mA = —[3K2 —(K3/K4)]A —(9/4)K4A
in the lattice with cubic and quartic ANNI (or quartic
ANNI, K3 =0, 8 =0). From these equations we can ex-
actly determine the period of oscillation T of nonlinear
sinusoidal mode (10) as a function of amplitude Am.„(or
energy per single oscillator) (see, e.g. , [11]). These equa-
tions can also be easily solved within a "rotating wave ap-
proximation" (RWA) when A(t) =Acos(cut) and only a
single frequency component is included in the time depen-
dence. For the considered short-wavelength optical-like
oscillations, this approximation holds due to the weakness
of nonresonant interaction between the modes with fun-
damental frequency and its third harmonic.

In the lattice standing-wave localized mode with
bright profile, the envelope of particle displacements
f„=(—I)"u„decays at both infinities according to the
exponential law [cf. Eqs. (8) and (9)]:

f„cx:exp(~ qan)cos(cot),

4K2cosh (qa/2) =mco (12)
Equation (12) has a solution for real q only for the local-
ized mode with frequency higher than the upper cutoA
frequency of harmonic oscillations (mco & 4K2), and for
the high frequency anharmonic mode the decay length of
the exponential tail (11) is much shorter than interparti-
cle spacing: qa))1 for mco ))4K2. Therefore the f„
pattern of the localized standing-wave mode can be ob-
tained by matching (near corresponding minima) the en-
velope function f„=(—1)"u„of sinusoidal mode (10)
(with oscillation period T) with short exponential tails
(11) of the same (high) frequency co=2rc/T. In this way
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we can establish that in the lattice with hard quartic
anharmonicity, two symmetric most strongly localized
large-amplitude sinusoidal modes of odd and even parity
exist, which correspond to a half period of the cosine en-
velope function f„=A(t)cos( —,

' trna+a) with a =0 or
a= —,

'
tr and have (approximate) displacement patterns

u„=A(t)(. . . , 0, ——,', I, ——,',0, . . .) or u„=A(t)(. . . , O,
—1, 1,0, . . .). Intrinsic localized modes with such dis-
placement patterns were previously revealed in asymptot-
ic analytical and numerical studies of the dynamics of
monatomic lattice with hard quartic ANNI [12,13] (see
also [8] for the continuous envelope-function description
of these and other nonlinear localized modes). A slowly
moving large-amplitude localized sinusoidal mode can
also exist in the lattice, which has in the RWA the en-
velope f„=Acos [k (na —Vst ) ]cos(hk —cot ) [for

~
k (na

—Vgt)~ ( —,
'

n, ka= —,
'

tr, mco =3K2+(81/16)K4A ],
where Vg(hk, A) « QK2a /m and hk «k are the
(small) group velocity and "reduced" wave number of the
mode. In the lattice with cubic+hard quartic anharmoni-
city, a standing-wave localized mode with the one-period
cosine r„pattern (10) exists [with ka= —,

'
tr, 8 = —K3/

3K4, A )& ~8 ~, and mco =3K2+ (27/16)K4A —K3/K4 in

the RWA], which has (slightly) asymmetric u„and f„
patterns. Essentially the formation of any of the above
nonlinear sinusoidal standing-wave (or slowly moving) lo-

calized modes can occur in consequence of superposition
(during resonant head-on collision) of two sinusoidal soli-

tary waves [with the one-period cosine r„patterns (3)]
propagating in opposite directions with equal (or close)
amplitudes A, similar to the formation of the extended
sinusoidal standing-wave mode (10).

Matching sinusoidal eigenmodes (10) with ka =
z tr,

ka =
3 n, or ka =x, we can find new exact solutions for

strongly localized transition regions between two extend-
ed standing-wave vibrational domains of definite wave
number in the lattice with soft quartic ANNI (K4&0).
Indeed, we reveal in the RWA that (at least) three ex-
tended eigenmodes [with the patterns u„=Apcos( —,

' trn)
&icos(copt), u„=Ap(44/3)cos( —,

' trn+ —,
' tr)cos(copt), and

u„=Apcos(trn)cos(copt)] exist in the lattice, in which

particles oscillate with the same frequency coo

= jI2K2/7m and amplitude Ap= j4K2/21~K4~. With
the help of these eigenmodes, we easily obtain the exact
form of (most strongly localized) domain walls between
two wavelength-four modes [u„=Ap(. . . ,

—1,0,
1,0, —1, 1,0, —1,0, 1, . . . )cos(copt )], between two upper
cutoff modes [u„=Ap(. . . , 1, —1, 1,0, —1, 1, —1, . . . )
x cos(copt )], between the upper cutoff and wavelength-
four modes [u„=Ap(. . . ,

—1, 1, —1,0, 1,0, —1,0, 1, . . . )
x cos(copt ) ], etc. A link with the pattern u„
=Ap(0, —1, 1,0)cos(copt) can play the role of a kink in

the upper cutoff (or wavelength-four) mode, while a link
with the pattern u„=Ap(0, 1,0)cos(copt) can play the role
of a kink in the ka = —, tr (or upper cutoff) mode. All of

these dark-profile localized structures in the lattice with
interparticle anharmonic potential (1) substantially differ
from similar structures in the lattice with on-site anhar-
monic potential, which have been recently observed in the
lattice of coupled pendulums suspended in a gravitational
field [14].

In conclusion, we have shown that finite-amplitude
traveling or standing sinusoidal waves with a short and
commensurate wavelength and, in general, amplitude-
dependent frequency, are exact eigenmodes of a 1D lat-
tice with cubic and/or quartic anharmonic potential be-
tween any arbitrary number of nearest and non-nearest
neighbors. New dark-profile localized standing-wave
structures are predicted within a rigorous discrete-lattice
approach. The existence of NSW influences the classi-
fication of the large-amplitude vibrational eigenstates,
and therefore NSW must be considered in a complete
thermodynamic description of the anharmonic lattices.
Supersonic traveling NSW can generate sinusoidal lattice
solitons and contribute to the energy transport in the sys-
tem. The processes of the formation of standing-wave (or
slowly moving) nonlinear sinusoidal modes, including lo-
calized ones, as a consequence of the superposition of two
NSW traveling in opposite directions, can influence An-
derson localization of vibrational states in disordered
anharmonic solids.
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