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Gyrokinetic Simulation of Ion Temperature Gradient Driven Turbulence in 3D Toroidal Geometry
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Results from a fully nonlinear three-dimensional toroidal electrostatic gyrokinetic simulation of the
ion temperature gradient instability are presented. The model has adiabatic electrons and the complete
gyrophase-averaged ion dynamics, including trapped particles. Results include the confirmation of the
radially elongated ballooning mode structure predicted by linear theory, and the nonlinear saturation of
these toroidal modes. The ensuing turbulent spectrum retains remnants of the linear mode structure,
and has very similar features as recent experimental fluctuation measurements.

PACS numbers: 52.35.Ra, 52.25.Gj, 52.35.Qz

Recent advances in both nonlinear Sf methods for
gyrokinetic simulation [1,2] and massively parallel super-
computing now make it possible to simulate a sizable
fraction of a tokamak plasma using realistic physical pa-
rameters. Here, we report results from the f][rst whole
cross section three-dimensional (3D) electrostatic toroi-
dal gyrokinetic simulation. We investigate the nonlinear
evolution of the ion temperature gradient (ITG) driven
instability and the associated turbulence and transport in

realistic geometry and dimensionality. The ITG mode
has long been considered a plausible candidate to explain
the observed anomalous ion heat transport in tokamak
plasmas, which is substantially above the predicted neo-
classical values [3,4]. The simulation results presented
below show very similar features in terms of the Auctua-
tion spectrum as the recent beam emission spectroscopy
(BES) diagnostic on TFTR [5].

In these simulations, the ions are fully gyrokinetic, in-
cluding trapped particles. The electrons are treated as
adiabatic which permits a moderate size time step (simu-
lations with kinetic electrons are feasible, but the time
step would need to be smaller by the factor v„/v„). The
simulation is running eSciently on massively parallel
supercomputers (currently the CM-200 and CM-5)
which allow simulations of relatively large systems (e.g. ,a) 100p; minor radius, Ax =p;). Typical runs up to this
point have used 10 to 10 particles with 1 to 2 particles
per grid cell, and a timing of 2-3 ps per particle per time
step on a fully configured CM-200. Fine grid resolution
is needed in the toroidal direction because the mode
structure is helical (elongated along the magnetic field
lines, i.e., ki«k&), resulting in a smaller number of par-
ticles per grid cell relative to conventional slab simula-
tions.

Starting with the electrostatic gyrokinetic equations
with a nonuniform equilibrium 8 field [6], we write
f(z, t) =f0(z)+Sf(z, t), where z=(R, v~~, p), and expand
z into its equilibrium and perturbed parts: z=i +z'.
fo(z) is a Maxwellian and satisfies i 8+0(z) =0. The
equation for the perturbed ion distribution function 6f is
then [1]

8, Sf+i 8,8f= —i' t)+0,

(R, r'i ) = —xVP, b VQ (3)

A ~ A A A A

where b —=b+ (v i/B) b x b. Vb, P is the gyrophase-
averaged electrostatic potential, and dimensionless gyro-
kinetic units are used R/p, R, vi~/c, vi, eiti/T,
0,;t t, B/Bo 8, Bo is a reference value of B, p
=(v~/c, ) /(2B/Bo), 0; =eB0/m;c, c, =JT,/m;, and p,=c,/n;.

The particles follow their fully nonlinear trajectories,
6f is represented by B6f(z, t) =P;w;6(z —z;), and parti-
cle weight w; is then evolved using [1]

w;= —(1 —w) i , rl j'0
z=z;, t

(4)

Electromagnetic equations have been formulated [I], but
not yet implemented in the code. Equations (2) and (3)
are similar to those of Hahm [6], and accurate to the
same order, but we have assumed B*=B for numerical
eSciency. As usual, finite size particles are used in the
configuration space. The electrons are assumed adiabatic
(Sn, /nri=ep/T, ). This model predicts negligible particle
transport and is probably inappropriate at the plasma
edge [7]. However, this assumption may be appropriate
for predicting core ion heat transport when LT/L„)) 1

[8-10].
The simulation coordinates (x,y, y) are related to the

usual toroidal coordinates (r, o, iver) through x =r cos9
and y =rsin0. Using these coordinates, assuming (ki/
k~)Bti/B~&&1, where Ba and B~ are the poloidal and
toroidal components of 8, one can transform the electro-
static field equation [11]to obtain

(T /T ) [1 10(k~T /T )]0(k~, y)
=6n; (k~, iver)

—y(k~, it ), (5)

where &7; =(n; —no)/no, n; is the gyrophase-averaged ion

where the magnetic moment p is time independent and
the other equilibrium and perturbed phase space variables
are evolved using

(R, v
ii ) = ( —v ib + —1& VB,b* pVB ),
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density, k& =(k,p„k~p, ), and higher order terms have
been neglected. p, is assumed constant in Eq. (5). For
the radial boundary condition we set Bn; to zero for
r ~ a —4p, within the square cross section. The magnet-
ic field is fixed and specified by B~=BpRp/R, Be=rB~/
Rpq(r), and q(r) =qp+Aq(r/a) . Initial equilibrium
density and temperature profiles are used such that I.„—:iVni/n and LT '=[VT[/T have a radial variation pro-
portional to sech [(r —rp)/l], where rp and 1 as well as
the peak normalized gradients L„'(rp) and LT '(rp) are
all specified parameters. For the results presented, the
particles are loaded homogeneously and the variation in

the profile appears only in the right-hand side of Eq. (4).
We will now discuss simulation results from a run us-

ing the following numerical parameters: 10 particles, a
128x[28x64 grid in (x,y, y), with a perpendicular grid
cell size hx =Ay =p„and a time step of Ate, /LT(rp)
=0.45. The physical parameters are eT =LT(r p)—/R p

=0.075, 1/L„(rp) =0, T; =T„a=64p„and Rp =892p„
qp=1. 25, hq =3, /=20p„rp= z a, q(rp) =2, s
—= (r/q)dq/dr =0.75 at rp. The local parameters at r =rp
are similar to the TFTR perturbed supershot experiment
[12], except for the aspect ratio. In the initial phase of
the run, we observe a clean linear growth of the most un-

stable toroidal harmonic and the associated 2D eigen-
mode in (r, O) with a ballooning type mode structure.

Figures 1(a) and 1(b) are the poloidal and toroidal slices
of the potential in the linear phase. Figure 1(c) shows
the relative amplitude of the various (m, n) modes
in the linear phase at the q =2 Aux surface for

„ltd „exp( —irn8 int—t/) O. ne dominant toroidal
harmonic is present (n =4) with a dominant poloidal har-
monic (m =8) plus a few lower amplitude sidebands to
produce the ballooning envelope. Figures 1(a)-1(e) are
snapshots taken just before the saturation of the dom-
inant mode.

The measured real frequency is ro„= —0.06c,/LT and
the growth rate is y=0.03c,/LT. The closest analytic
theory for toroidal ITG modes, in terms of the assumed
ordering, is the slab branch in the long wavelength limit
[4] with tII —tpi, —eT nI~TI, kap; —eij, and the approxi-
mate dispersion relation given by

(7J ) I/5[( k ) 2~/ ] 2/5 i7x/IP

qRp
(6)

which yields cp„= —0.05c,/LT and @=0.07c,/LT. Com-
parisons with more detailed eigenmode calculations of
Tang and Rewoldt [3] show agreement within 15% in

terms of real frequency, growth rate, and mode structure.
This dominant eigenmode grows linearly and saturates at
a level of e[p(r =rp, 0=0,n =4)[/T, =0.03, which is in

the range of the mixing length level I/k&LT =0.06, where

Q(x Y V=O) p(x Y=O, V)

(c)8—
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FIG. 1. plots of the electrostatic potential during the linear phase and nonlinearly saturated steady state. (a) poloidal cross sec-
tton during the linear phase, (b) toroidal cross section during the linear phase, (c) excited toroidal and poloidal harmonics during the
1'"ear P"ase' the size of the circle indicates amplitude of the potential; measurement is made at the q =2 surface; (d)-(f) are the
same diagnostics, taken during the saturated steady state.

2043



VOLUME 71, NUMBER 13 P H YSICAL REVI EW LETTERS 27 SEPTEMBER 1993

we use LT since 1/L„=O and k~ = ke. The local 2D
shearless slab mode coupling calculation [8] predicts a
saturation level eip(x)il/T, =J3[cu+iy[/k&p, c, =0.03,
which is in agreement with the toroidal simulation result.
This may be due to the fact that the mode is not strongly
localized radially. The toroidal mode coupling calcula-
tion will be investigated in the future; however, let us

briefly comment on a plausible mechanism for the initial
saturation of the most unstable mode. The linearly most
unstable modes (+ l, ~ m, + n), where l is the radial
mode number, couple together through the E&B non-

linearity to generate (~ 2l, 0,0) temperature perturba-
tions which then causes saturation, in a similar fashion as
in Ref. [8]. At saturation, g; =1.6p, c,/LT taken at r
=ro, then drops and comes to a steady-state value of

g; =0.2p, c,/LT, for comparison y/k ~ =0.5p, c,/LT.
In the steady state, both long and short perpendicular

wavelengths are enhanced with the spectrum peaking
around k„p, -0 and kep, —0.1-0.2, and the ballooning
structure modified, but still prevalent. Broad scale (i.e.,

many modes are present) turbulence with a Auctuation
level of eipki/T(1% is observed. Figures 1(d)-l(f) are
the corresponding plots during the nonlinear saturated
steady state. These snapshots were taken at a time
300LT/c, after the saturation of the fastest growing
mode. Figures 1(c) and 1(f) show the poloidal and
toroidal harmonics (m, n) which have appreciable activity
for the linear phase and the nonlinear state, respectively.
After the system settles down to a steady state, the activi-

ty is at a lower (m, n) than the (m, n) associated with the
most unstable mode. We also note that the peak of ac-
tivity lies on the m =qn line as expected.

Figures 2(a) and 2(b) are the ka and k„spectra taken
at the turbulent steady state. These measurements were
made over the half annular region of 0 6 [—x/2, + ir/2],
r E [4 a, 4 a], and y C [ —z, zc]. The region has approxi-
mately a 32p, ( =a/2) radial width and a 100p,
( =xa/2) poloidal length. Figure 2(a) shows S(ke)
=g„,k, p(k„ka, n), and Fig. 2(b) shows S(k„)
=g, , ke P(k„,ke, n) . These diagnostics are an attempt at
mimicking the recent BES measurements on TFTR [5].
The spectrum shows similar features as the experimental

measurements in that the k, spectrum peaks at zero and

kg spectrum peaks in the range of kqp, -0.1-0.2. These
properties of the spectrum have so far been found to be
fairly insensitive to the choice of simulation parameters.
One notable diAerence between the numerical result and
the experimental measurement is that the width in the k,
spectrum is broader in the simulation. One possible ex-
planation is the small minor radius of the simulation
causes more localization of the modes radially, hence
artificially broadening the k, spectrum. This will be test-
ed in the future, as the size of the simulations can be in-
creased.

Figure 3(a) shows the initial temperature profile (solid
line) and the Aattened profile in the quasisteady state
(dashed line). The dashed line is measured at a time
750LT/c, past the saturation of the most unstable mode,
at which time the center temperature has dropped by 8%.
The term quasisteady state is used because the tempera-
ture profile continues to relax at the transport time scale
(approximately a /g; —20000LT/c, ), which is a much
longer time scale than the initial transients (settling down
before 300LT/c, ), and the time scale of the ensuing Auc-

tuations [approximately (kinet|«. ) ' —30LT/c, ]. To ensure
this quasisteady state is still linearly unstable, we have
made another run using the steady-state profile [shown in

Fig. 3(a)] as an initial condition and observed compara-
ble linear growth and nonlinear saturation. Note that the
temperature relaxation is a global phenomenon and is not
localized to any individual rational surface.

Figure 3(b) shows the radial variation in g;, which ap-
pears fairly flat, except towards the edge where g; goes to
zero because the ion density fluctuations are set to zero in

the simulation for r ~ a —4p;. Simulations with larger
volumes (i.e., a larger minor radius) will probably be
needed to compare with the experimentally observed
trends which show a radially increasing g; (r) profile [13].

Previous 3D sheared slab simulations have shown radi-
al localization of the mode structure within a few ion

gyroradii of the rational surface(s) [14]. For the 3D
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FIG. 2. Wavelength Auctuation spectra for kii and k, . (a)
Fluctuation amplitude vs ke and (b) Auctuation amplitude vs k, .
k, and ke are in units of p, , and S is in arbitrary units.

FIG. 3. Radial temperature profile and heat diA'usivity. (a)
Temperature vs radius; initial equilibrium is the solid line;
dashed line is the steady state and (b) heat diffusivity g; vs ra-
dius at steady state; the solid line is g; calculated using initial
equilibrium and the dashed line is calculated using the evolved
equilibrium.
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g; tx: (k~p, ) ~(p, /L7 )cT/eB, (7)

using kii= I/qR and LT/R =const. Although the quasi-
linear theory gives p = —', [8], in general, the exponent p
does not have a unique solution (because of the insuffi-

cient number of allowable transformations). Neverthe-
less, this scaling indicates that if the k&p, spectrum in

the turbulent steady state remains unchanged for
diA'erent sizes of minor radius, a, the magnitude of g;
should remain constant, which would give gyro-Bohm
scaling. However, preliminary indications from larger
simulations show that g; increases with system size.
Thus, the scaling is not entirely gyro-Bohm. Further-
more, the simulation has a minor radius which is 5- I 0

case, the resolved rational surfaces were closely spaced
radially towards the center of the box, causing the fluc-
tuations to be localized there as well, producing a rela-
tively small steady state g; of approximately 0.004p, c,/
LT [14]. The larger toroidal simulations presented here
have more resolved rational surfaces which are distribut-
ed throughout the minor radius, producing a more tur-
bulent system and a much larger steady-state heat flux.
In addition, the toroidal case has a larger linear growth
rate, and remnants of the radially elongated mode struc-
ture (toroidal coupling of the rational surfaces) persist in

the turbulent steady state. It is interesting to note that on
the strong B-field side (19= ~ tt), the mode structure is
more slablike, i.e. , more localized to rational surfaces,
which is consistent with 2D toroidal eigenmode calcula-
tions [3].

We have also run a case with the same parameters ex-
cept for using a finite L„, such that ri;=LT/L„=2. 3, the
purpose being to see the eAect of running closer to mar-
ginal stability and compare with the unperturbed su-

pershot parameters [12]. In this case (tI; =2.3), the
shape of the k„,kz spectrum is similar, but the steady
state g; is reduced to approximately 0.06p, c,/LT. It is in-

teresting to compare the simulation results to the thermal
difusivity in gyro-Bohm units for the perturbation exper-
iment on TFTR [12], where both the perturbed and un-

perturbed cases gave g;=0.3p, c,/LT. The simulation
gives good agreement for the fiat density case (perturbed
case); however, it shows a considerable reduction in the
gyro-Bohm coefficient for the case closer to marginal sta-
bility (ri; =2.3, unperturbed case) which was not ob-
served in the experiment. This discrepancy may be in

part due to a simplified physics model. Other eAects
found to be important, but are not included in our model,
include trapped electrons, collisions, energetic ions, and
impurities [8-10].

To gain some insight into the scaling trends of ITG
driven transport, one can examine the invariance proper-
ties [15] of the governing equations. In the gyro[]uid lim-

it, the scaling can be written as [8]

times smaller in comparison with the TFTR experiments
[5, 12], and has a wider k„spectrum and a smaller g;.
These observations are evidence of non-gyro-Bohm scal-
ing and the trend is consistent with Eq. (7). Recent di-
mensionless scaling experiments on TFTR [16] give the
same non-gyro-Bohm trend.

In summary, our 3D toroidal gyrokinetic simulations
confirm the radially elongated ballooning mode structure
predicted by linear theory and show the nonlinear satura-
tion of these toroidal modes. The ensuing turbulent spec-
trum retains remnants of the linear mode structure, and
has similar features as recent experimental fluctuation
measurements [5]. Current whole tokamak simulations
are limited to minor radii of (100-200)p, . In the future,
teraflop scale massively parallel supercomputers will al-
low simulations with a minor radius in the range of
400p„which is typical of the size of present day
tokamaks. Such simulations will continue to serve as a
useful tool for a better understanding of tokamak tur-
bulence.
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