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Spiral Defect Chaos in Large Aspect Ratio Rayleigh-Benard Convection
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We report experiments on convection patterns in a cylindrical cell with a large aspect ratio. The fluid
had a Prandtl number a = 1. We observed a chaotic pattern consisting of many rotating spirals and oth-
er defects in the parameter range where theory predicts that steady straight rolls should be stable. The
correlation length of the pattern decreased rapidly with increasing control parameter so that the size of a
correlated area became much smaller than the area of the cell. This suggests that the chaotic behavior is
intrinsic to large aspect ratio geometries.

PACS numbers: 47.20.Bp

Rayleigh-Benard convection, the instability of a hor-
izontal Auid layer heated from below, has served as a
paradigm for the study of nonlinear pattern formation in

systems under nonequilibrium conditions [1]. One impor-
tant reason for this is the extensive nonlinear stability
analysis that has been carried out by Busse and Clever
[2,3], which provides an unusually detailed picture of the
secondary instabilities expected for this system. The on-
set of convection occurs when the temperature diAerence
hT across the layer exceeds a critical value h, T, . For
4,T & h, T„ the quiescent layer becomes unstable to a
periodic pattern of convection rolls with wave number k.
The stability analysis showed that there is a well-defined
region in the h.T-k plane, known as the "Busse balloon, "
within which time-independent straight rolls are predict-
ed to be stable. The detailed size and shape of the bal-
loon depend on the Prandtl number o =v/lc, where v is
the kinematic viscosity and K the thermal diA'usivity.

In this Letter we report experimental results for con-
vection in gaseous COz (a=0.96) in a large aspect ratio
system (I =radius/height=78). In much of the regime
where theory predicts time-independent parallel straight
rolls, we observed instead a spatially disorganized time-
dependent state consisting of many localized rotating
spirals and other defects. There were both right- and
1eft-handed spirals which rotated clockwise and counter-
clockwise, respectively. Most were single armed, but we
also observed two- and three-armed spirals and patches of
concentric rolls. The spirals were not created in pairs,
but rather emerged from and coexisted with surrounding
highly disordered regions in the pattern. Usually, spirals
were created and destroyed in the interior of the cell well

away from the boundaries. The overall pattern appeared
to be chaotically time dependent. Our results indicate [4]
that this state is representative of convection in large-I
systems with o = l. This is consistent with early observa-
tions on a large-I sample using liquid helium [5], but in
that work the patterns were not visualized.

It is well known that defects and roll curvature give
rise to large scale mean flows [6-8] which can in turn ad-
vect the rolls, leading to complex time dependence. Such
Bows have much more pronounced efIects at low cr. We
are unable to visualize such Aows, but recent numerical
simulations [9] suggest that they are important for under-

standing the spiral-defect-chaos state.
Our convection cell consisted of a sapphire top plate

and a polished aluminum bottom plate, each 0.95 cm
thick. The bottom plate had a film heater glued to its
lower surface. The lateral boundaries were constructed
of three layers of porous filter paper which was compliant
enough to allow the cell height to be adjusted by up to 10
pm by means of three piezoelectric stacks. The height d
was 568 pm, uniform to ~ 1 pm. The cell height and its

uniformity were measured interferometrically. The paper
sidewalls produced smaller lateral temperature gradients
than the solid ones used previously [10] and caused the

pattern to prefer a roll orientation perpendicular to them.
For most of the results reported here the pressure was

32.7 ~ 0.1 bars, regulated to ~ 0.01%. The temperature
of the upper surface of the top plate was held at
24.00~0.02'C and regulated to + 2 mK by means of
circulating water maintained at the same pressure as the
gas. The bottom-plate temperature was measured by
means of an embedded thermistor and regulated to + 0.5
mK. This temperature was varied as the experimental
control parameter. This protocol caused the average tem-
perature and thus the average fluid properties to vary
with control parameter. We define the reduced tempera-
ture dil1erence e=AT/AT, O

—1,—where AT, O is the critical
temperature difference for a lluid having properties corre-
sponding to those of a sample at the average temperature
T. We found the onset of convection at h, T, =6.622
+ 0.005 C, and used the known temperature dependence
of the gas properties to obtain AT, O(T). The characteris-
tic time scale is the vertical thermal diA'usion time

t,, =d /K=1. 3 s. t,, varied about 15% over our range of
T, while the Prandtl number a=0.96 varied only about
3% [11]. The patterns were visualized using the shadow-

graph method [121.
The states we studied were formed by increasing

from just below onset to the desired final value in a short
time (—10t,, ). After this quench we waited at least two
horizontal diAusion times, t~=—I l,, =2.2h, for transients
to decay. We used this procedure as a matter of conveni-
ence only; we have obtained similar patterns by increas-
ing e slowly (t„, de/dt =10 ).

Examples of patterns observed for small e are shown in

Fig. 1. For e ~0.050 we found essentially straight rolls in
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FIG. l. Examples of patterns observed for e (0.2. (a)
@=0.040, nearly perfect straight rolls. (b) t. =0.116; the global
texture is dominated by curved rolls due to a few focus singular-
ities on the sidewalls.

FIG. 2. Pattern sequence as t.' is increased. (a) a=0.465,
coexistence of sidewall foci with a central chaotic region. (b)
t. =0.721; spiral defect chaos completely fills the cell.

agreement with theory as shown in Fig. 1(a). The rolls
showed a progressive tendency to become normal to the
sidewalls with increasing e, which resulted in strong cur-
vature together with focus singularities at the sidewalls as
shown in Fig. 1(b) for a=0. 116. This state showed per-
sistent time dependence on time scales of order tl„attri-
butable to the motion of defects, grain boundaries, and
foci. This behavior is reminiscent of observations made
in previous studies [13,14] of water in cylindrical cells.

With increasing e, time dependence on shorter time
scales [O(100t,, )] developed in the interior of the cell. It

took the form of transient rotating spiral patches at
t. =0.4, and for e ~ 0.5 a sea of interacting rotating
spirals and other mobile defects existed in the interior as
shown in Fig. 2(a) [4, 15]. With further increase in e the
area occupied by the foci on the sidewalls decreased until
the cell was filled with what we have termed "spiral de-
fect chaos, " as shown in Fig. 2(b) for @=0.721. Indivi-
dual spirals typically rotated several times while translat-
ing a distance comparable to their diameter before being
destroyed or suAering a change in the number of arms. A
common process resulting in a change in the number of
arms consisted of a dislocation gliding into the spiral
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FIG. 3. The azimuthally and time-averaged structure func-

tion of the pattern at @=0.465. The dotted lines show the sta-
bility boundaries for straight rolls from the Busse balloon.

FIG. 4. The correlation length ( vs e. The solid circles are
for a pressure of 32.7 bars ('P, = —1.05, o =0.96; see Ref. [11])
and the straight line is a fit by g =(pe . The triangles and
squares show ( for 25 6b.ars (P, = —2. 1, o=0.86) and 41.5
bars (P, = —0.7, o =1.06), respectively.

core. Occasionally, successive events of this kind left a
spiral with opposite handedness to the original. Spirals
were generally created and destroyed by complicated pro-
cesses involving interactions with the other nonspiral de-
fects in the pattern, rather than with other spirals. The
time scale for the dynamics decreased with increasing e,
but a detailed account of the temporal behavior is beyond
the scope of this Letter.

We characterized these patterns using the structure
function S(k), equal to the time average of the square of
the modulus of the spatial Fourier transform of the sha-
dowgraph signal. S(k) provides quantitative information
regarding the spatial scales of the roll patches. We
prefiltered the images by multiplying them by a radial
Hanning function H(r) —= [I +cos(xr/r p)]/2 for r ( r p

and H(r)=0 for r ) rp. We used rp=0. 71I in units of d,
and averaged 256 measurements of S(k) taken at inter-
vals of order several hundred t„S(k) pro.gressed from a
few sharp peaks to a broad ring as t..was increased. For
e) 0.4, where many spirals appear, S(k) was nearly az-
imuthally symmetric; i.e. , it depended only on k—:ski and
not on k. At each t.', we performed an azimuthal average
in k space to obtain better statistics for S(k). A typical
result is presented in Fig. 3.

In terms of the first two moments,

f ikiS(k)d k fp"k'S«)dk
fS(k)d k fp kS(k)dk

and

~0.05. Obviously, g decreases strongly with increasing
e, and is only of order a few d for e & 1. Under these con-
ditions a correlation area (erg ) occupies less than 0.1%
of the tota1 cell area. A statistical description in the
infinite- limit [I] might accurately characterize our ex-
periments for c) 1. We also show g for runs at two other
pressures which span a range of fiuid parameters [11].
We find very similar behavior in these cases, with g tend-
ing to increase slightly with pressure, for fixed e.

The mean wave vector (k) of the pattern decreased
with increasing e in such a way that it stayed well within
the theoretically stable region [3,16] (the Busse balloon)
as shown in Fig. S. It has previously been suggested that
pattern instabilities [17], or the onset of complex time
dependence [8,14,18], occur when the wave-vector distor-
tion required to meet the lateral boundary conditions
forces the pattern to become unstable by locally exceed-
ing the stability limits of the uniform infinite pattern.

1.5
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fiki S(k)d k fp k'S(k)dk
fS(k)d'k fp kS(k)dk

(2)
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of S(k), we define an average wave vector (k) and a
correlation length

(3)
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k — k (d-')
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Our results for g(e) in units of d are presented in Fig. 4.
The solid line is a fit by a power law of the form
g =(pe ", and yields gp

= (2.4 ~ 0.1)d and v =043

FIG. 5. A comparison of (k& and width g with the stability
boundaries (the Busse balloon) predicted for straight rolls at
o =0.96. The dashed curve is the neutral curve. The solid cir-
cles indicate (k&, while the horizontal bars extend by
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The analog of this cell geometry dominated situation in

our cell would seem to be the slowly time-dependent state
we observed for a~0.2. On the other hand, the nu-
cleation and proliferation of spiral defects observed at
higher t. does not fit this picture. The chaotic state is al-
ready well developed when only a small fraction of the
wave-vector distribution lies outside the Busse balloon as
shown in Fig. 3. It seems more reasonable to explain the
broadening of the wave-vector distribution as a conse-
quence of the disordering effects of dynamics intrinsic to
the pattern, rather than as a response to boundary condi-
tions. At higher e, the wave-vector distribution extends
over both boundaries of the Busse balloon, and we do oc-
casionally observe, for example, the nucleation of a pair
of dislocations in places where rolls are pushed close to-
gether.

The rotation of the spiral defects is a particularly strik-
ing feature of the chaotic state. Periodic states involving
dislocations and spirals, both rotating [10] and nonrotat-
ing [8], have been observed previously in gas convection,
but in these cases the spirals spanned the experimental
cell and were influenced by special lateral boundary con-
ditions. In our experiments, it is clear that the spirals are
coherent structures [1] which emerge as part of the
chaotic dynamics, and are unrelated to the lateral boun-
daries. Our results naturally raise the question of why
the experimental patterns differ so dramatically from the
theoretical expectations. It appears that the straight-roll
state is a rather special situation [19];the attractor basin
of straight rolls apparently does not overlap with the ini-
tial conditions and boundary conditions accessible to the
experiment. The spiral defect chaos found at t. ~ 1 is no
longer dominated by the boundaries, and presumably rep-
resents a different, unsteady state that would persist in

the finite- limit.
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