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Acoustic Band Structure of Periodic Elastic Composites
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%'e present the first full band-structure calculations for periodic, elastic composites. For transverse
polarization of the vibrations we obtain a "phononic" band gap which extends throughout the Brillouin
zone. A complete acoustic gap or a low density of states should have important consequences for the
suppression of zero-point motion and for the localization of phonons, and may lead to improvements in

transducers and in the creation of a vibrationless environment.

PACS numbers: 43.40.+s, 41.20.Jb, 42.25.Fx, 63.20.—e

This Letter concerns a periodic composite —a repetitive
structure made up of two materials with diAerent elastic
properties. We shall present the eigenfrequencies as a
function of the Bloch wave vector, co(k), that is the band
structure of the composite. This is the first full calcula-
tion of an "acoustic" or "phononic" band structure.

Our inspiration is drawn from exciting developments
dealing with macroscopic, periodic constructions of two
transparent dielectrics, and the corresponding "optical"
or "photonic" band structures. Such "crystals" have
been machined out of low-loss dielectric materials; they
contain up to -8000 "atoms, " and the lattice parameter
is a —13 mm [1,2]. Consequently the experiments in-

volve the microwave region, to/2tr —15 6Hz. It is expect-
ed that these photonic crystals will be eventually scaled
down, utilizing the technique of reactive ion etching [3].
For a ~ 1 pm the optical region would be attained, open-
ing the way to diverse applications associated with semi-
conductor physics and technology [4]. It is appropriate to
note that colloidal crystals composed of charged poly-
styrene spheres can have a (0.2 pm [5]. Indeed, studies
of visIble light scattering from such crystals date back 30
years [6].

On the theoretical side, the photonic band structure
was calculated for face-centered-cubic crystals having
diff'erent compositions of the unit cell [2,7,81. Of special
importance is the obtainment of a complete band gap, in

which no eigenfrequency is permitted for any value of k
and for any polarization of the wave. This does not hap-
pen to be the case for a simple face-centered-cubic struc-
ture [7]. However, for more complex unit cells (such as
the diamond structure), full "photonic gaps" were found
[2,81, provided that the dielectric constant ratio of the
two constituents is sufficiently large (a condition that is

not realized for colloidal crystals). Periodic arrays of
dielectric cylinders in a background medium were also
studied. The corresponding two-dimensional band struc-
ture was determined both theoretically and experimental-
ly [9,101. For a brief review of photonic band structure
see Ref. [11].

There are three motivations for this work and they are
largely associated with complete acoustic or phononic

band gaps. First, in analogy to the photonic case, in the
frequency range of a complete phononic gap vibrations,
sound, and phonons would be forbidden. Thus a vibrator
or a small (real) crystal introduced into a periodic com-
posite as a defect would be unable to emit or generate
phonons within the band gap. Indeed, for periodic dielec-
trics, the inhibition of spontaneous emission of photons
has been predicted [4] and observed [5,12]. In the case
of a hydrogen atom, the inability to decay freely leads to
photon bound states and to dressed atoms [13]. The inhi-
bition of spontaneous emission is directly related to the
suppression of zero-point (vacuum) ffuctuations, for pho-
nons as well as for photons.

Our second motivation is the possibility of applications.
A complete acoustic gap could be engineered to provide a
vibrationless environment for high-precision mechanical
systems in a chosen range of frequencies. In addition,
periodic arrays of piezoelectric and pyroelectric compos-
ites have had long-standing applications as transducers
for transmitting and receiving signals in water [14].
These are used in sonar and depth-finding systems (at
frequencies of tens of kHz and above) [15] and have been
also designed for medical ultrasonic imaging (0.5-20
MHz) [14,16]. However, the corresponding computa-
tions of band structure were very limited in scope [17,18].
Obviously, the availability of full band-structure calcula-
tions for elastic composites could lead to improvements in

the design of transducers.
The third and last motivation is related to the sugges-

tion that the Anderson localization transition may be ob-
served for electromagnetic waves propagating in strongly
scattering dielectric structures [19]. The localization of
classical waves in random media is a topic of considerable
interest [20]. In fact, photon localization of microwaves
has been observed for a three-dimensional disordered sys-
tem of dielectric and metallic balls [21]. This was associ-
ated with a minimum of the diA'usion constant —rather
than its vanishing —in a narrow window of frequencies
and filling fractions of the metallic spheres. Also, very
recently localization of bending waves in a steel plate,
decorated with Lucite blocks, has been detected experi-
mentally [22]. As in the photonic case [21], the localiza-
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TABLE I. Band-structure-related properties of three periodic systems.

Property

M aterials

Parameters

Lattice constant

Waves

Polarization

DifTeren tial
equation

Free particle limit

Band gap

Spectral region

"Electronic" crystal

Crystalline
(natural or grown)

Universal constants,
atomic numbers

1-5 A (microscopic)

de Broglie
(electrons) y
Spin I, l

V y+ V(r) y=i h
2m Bt

6 k8' = (electrons)
2m

Increases with crystal
potential; no electron states

Radio wave, microwave,
optical, x ray

"Photonic" crystal

Constructed of two
dielectric materials

Dielectric constants
of constituents

O. l pm-1 cm
(mesoscopic or macroscopic)

Electromagnetic or light
(photons) E,B
Transverse: V D =0
(V E&0)

V E —V(V E)=
c Bt

m = k (photons)

Increases with ~|.', Eb~;

no photons, no light

M icrowave, optical

"Phononic" crystal

Constructed of two
elastic materials

Mass densities, sound speeds
cl, c& of constituents

Mesoscopic or macroscopic

Vibrational or sound
(phonons) u

Coupled trans. -longit.
(V u~O, VxuaO)

See Refs. [27,281

co =ci,lk (phonons)

Increases with ~p,
—

pb~, etc.
no vibration, no sound

co~ l 6Hz

tion was caused by resonant scattering. Localization
could also be the consequence of a delicate interplay be-
tween order and disorder [23]. A defect in an otherwise
periodic composite produces strong localization [24], as
also happens in the familiar case of an impurity in a
semiconductor. It is entirely plausible that the study of
complete gaps in classical-wave band structures will elu-
cidate the conditions for strong localization of these
waves [23,25]. By now many such calculations are avail-
able for light waves, taking into account the vectorial
character of the fields [2,7, 10]. In the case of elastic
waves band-structure calculations are scarce [17,18,22]
and are restricted to a single direction of the wave vector.
We expect that the present work will bring to bear the is-
sue of phonon localization [20,26].

Periodic structures —ordinary crystals, dielectric com-
posites, and elastic composites —with identical Bravais
lattices give rise to essentially the same Bragg diA'rac-

tions. There are, however, numerous diAerences, and in

Table I the peculiarities of phononic crystals (elastic
composites) are contrasted with those of electronic (ordi-
nary) and photonic crystals.

Various theoretical aspects of elastic waves in inhomo-
geneous media have been studied by a number of scien-
tists [17,18,27]. Unlike electromagnetic waves, which are
transverse (V D =0), sound waves in solids can be longi-
tudinal, as well as transverse. In a homogeneous medium
the longitudinal and transverse waves are independent,
and the corresponding material displacements uI and u,
satisfy separate wave equations with wave velocities eI
and c&. On the other hand, in an inhomogeneous medium
the displacement u is in general not separable into com-
ponents uI and u& such that VxuI =0 and V u, =0. Thus
the calculation of acoustic band structures is a much
more difticult undertaking than that of optical band

structures. To illustrate the ideas involved we shall con-
sider a particularly simple situation.

Our system is composed of an array of straight, infinite
cylinders made of an isotropic solid "a" and embedded in

an elastic background "b," which is also isotropic. There
is translational invariance in the direction z parallel to
the cylinders and the system has (two-dimensional)
periodicity in the transverse plane. In the corresponding
electromagnetic case wave propagation was limited to this
plane [9,101. Following this restriction the wave vector k
is the two-dimensional Bloch vector. Then it turns out
that there are two independent modes of vibration [28].
One is a mixed-polarization mode with the displacement
u perpendicular to the cylinders; the oscillations are nei-
ther longitudinal nor transverse. For the other mode the
vibrations are parallel to the cylinders; hence u k=0, so
this mode is strictly transverse. In this Letter we calcu-
late the band structure only for the transverse polariza-
tion, that is u =uz. The justification is that this seems to
be the only case in which the wave equation for inhomo-
geneous solids greatly simplifies. Of course this wave

equation is nothing but the equation of motion for an ele-
ment of mass of density p. We find that [28]

8 up, =V, (pc2v, u), (I)t'
where c& is the transverse speed of sound and VI is the
two-dimensional nabla. (For a homogeneous medium p
and c& are position independent; the p cancels out and one
is left with the usual wave equation. ) In the optical case
the only material function involved is the speed of light at
a point r; in Eq. (I) we must consider two such functions,
c, (r) and p(r). Making use of the periodicity of our sys-
tem we expand p(r) and pc, = z(r) in two-dimensional
Fourier series. The Fourier transforms of these functions
are denoted p(G) and z (G), where 6 is the two-

2023



VOLUME 71, NUMBER 13 PH YSICAL REVIEW LETTERS 27 SEPTEMBER 1993

2.0 2.0

].5

Lal

C%

LJJ

Ck

&.o

Cl
LaJ

Cl
Laj

LK

0.5

1.5

C3

Lij

4j
IX

1.0

Cl
IJj
C3

a
hJ

0.5
18/ÃÃ//NPXXNINW//8/iW///8

O. O
Q

Al
I t I I I t l t

R F DUCED NAVE VFCTOR

0.0
t x Q

R EDUCED WAVE VECTOR
FIG. 2. As in Fig. l for aluminum alloy cylinders in a nickel

alloy background. Here f=0.75.

dimensional reciprocal-lattice vector. For the displace-
ment u we use the Bloch theorem,

( ) t( —ro—t) g (6) sG.

G
Substitution in Eq. (1) yields

g [r (G —6') (k+ G) (k+ G') —co'p(G —6') ]u k(6')
G'

=0. (3)

(2)

FIG. 1. Band structure for a periodic array of nickel alloy
cylinders in an aluminum alloy background. We plot the nor-
malized frequency vs the normalized, two-dimensional Bloch
vector. The insets show the unit cell and the corresponding
Brillouin zone. The parameters used are p =8.936 (2.697)
g/cm and c44=pc& =7.54 (2.79) X10" dyn/cm2 for Ni (Al)
[29], and f=0.1. There is a phononic band gap (shaded) ex-
tending throughout the Brillouin zone for vibrations parallel to
the cylinders.

The cylinder (background) material has a density p, (pb)
and it occupies a fraction f of the area of the unit cell. It
is easy to show that

p(6) =' paf+pb(I f)=p, 6=O-, —

, (p, —pb)F(G) =—hpF(6), Gw0, (4)

F(6) =A, ' d rexp( —iG r) . .
~a

2, is the area of the unit cell, and the integration is over
the cross-sectional area of a cylinder. An analogous for-
mula holds for r (G) in terms of r pc, and Ar =p, c,

pbcb. Then w—e can rewrite Eq. (3) employing the aver-
age parameters p and z, the "contrast" parameters hp
and d r, and the structure factor F(6):

(6)

loy rods in an aluminum alloy matrix, Fig. 1, and vice
versa in Fig. 2. The plots are rendered in terms of the
normalized frequency coa/2+co versus the normalized
Bloch wave vector ka/2n. Note that, in the vicinity of
the I point, the slope is not much diA'erent from 1. This
corresponds to a speed of sound, in the long-wavelength
limit, of —(pc(/p) '/ . The dimensionless parameters
which must be specified are p, /pb, r, /rb, and a/rn orf( =arroz/a ').

In both figures there is a vibrational band gap between
the first two bands. In order to establish this phononic
gap we have scanned the interior of the irreducible trian-
gle I XM of the Brillouin zone (see inset of Fig. 1), as

[rik+Gi —pco ]uk(6)+ g [Ar(k+G) (k+6') Apco ]F(6—6')uk—(6') =0.
G'&G

If 6 is permitted to take all the possible values, this is a
set of linear, homogeneous equations for the eigenvectors
uk(6) and the eigenfrequencies co(k). By letting k scan
the area of the irreducible region of the Brillouin zone,
the band structure is obtained.

We choose the rods to have circular cross sections of
radius rn. Then integrating in Eq. (5) we get F(G)
=2fJ~(Grn)/Grn, where J~ is the Bessel function of the
first kind of order I [9]. It is assumed that the array of
cylinders forms a square lattice of lattice constant a; thus
6= (2n/a ) (n„x+n~y), where n„and n~ were permitted
to take the integer values between —10 and +10 (441
plane waves). This resulted in a very good convergence.
The first ten phononic bands were computed for nickel al-
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well as its pheriphery. Because the gaps shown extend
throughout the Brillouin zone, wave propagation in the
transverse plane is forbidden for vibrations parallel to the
cylinders. In a future publication we shall examine the
dependences of these band gaps on the parameters of the
composite [28].

We have not calculated the band structures for the
mixed longitudinal-transverse mode with u perpendicular
to the cylinders. Therefore the gaps found are not "com-
plete" or independent of polarization. The study of the
mixed mode is of considerable interest, as are band-
structure calculations —for other composites with two-
and three-dimensional periodicities. The special situation
investigated here involves three parameters; however, in

general there would enter two more, namely, the ratio of
the longt tudina'l sound velocities and the ratio of the lon-

gitudinal to transverse velocities in either medium. This
contrasts with only two dimensionless parameters for
dielectric composites. Clearly, elastic composites oA'er a
richer —and more complicated —behavior. Because of
the coupling in general of transverse and longitudinal vi-

brations, and because c&~cI, it may take rather large con-
trasts to realize a full phononic gap. The prospect of
achieving a complete gap would much improve for a
periodic system of liquids and/or gases, because these
support only longitudinal sound propagation. The search
for a complete phononic gap should be an undertaking of
comparable importance to the pursuit of full photonic
gaps. In the frequency region of a complete acoustic gap
vibrations, sound, and phonons are absent, thus profound-
ly aA'ecting diverse fundamental properties. Moreover,
such a gap is intimately associated with the prospect of
Anderson localization of phonons. Also, the ideas
presented here could pave the way toward applications
such as transducers and a vibration-free environment. Fi-
nally we wish to stress that, to a large extent, this interest
in band structure of periodic elastic composites is still val-
id in the presence of a low density of state —rather than
a full gap.
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lVote added. —A recent paper [30] reports a narrow,
however, complete gap for Au cylinders in Be host.

[I] E. Yablonovitch and T. J. Gmitter, Phys. Rev. Lett. 63,
1950 (1989);J. Opt. Soc. Am. A 7, 1792 (1990).

[2] E. Yablonovitch, T. J. Gmitter, and K. M. Leung, Phys.
Rev. Lett. 67, 2295 (1991).

[3] A. Scherer et al. , J. Vac. Sci. Technol. B 8, 28 (1990).
[4] E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).

[5] Jordi Martorell and N. M. Lawandy, Phys. Rev. Lett. 65,
1877 (1990).

[6] W. Luck, M. Klier, and H. Wesslau, Naturwissenschaf-
ten 50, 485 (1963).

[7] K. M. Leung and Y. F. Liu, Phys. Rev. Lett. 65, 2646
(1990); Ze Zhang and Sashi Satpathy, Phys. Rev. Lett.
65, 2650 (1990).

[8] K. M. Ho, C. T. Chan, and C. M. Soukoulis, Phys. Rev.
Lett. 66, 393 (1991);S. Satpathy, Z. Zhang, and M. R.
Salehpour, Phys. Rev. Lett. 66, 394 (1991);K. M. Ho, C.
T. Chan, and C. M. Soukoulis, Phys. Rev. Lett. 65, 3152
(1990); C. T. Chan, K. M. Ho, and C. M. Soukoulis, Eu-

rophys. Lett. 16, 563 (1991).
[9] M. Plihal et al. , Opt. Commun. 80, 199 (1991).

[10] M. Plihal and A. A. Maradudin, Phys. Rev. B 44, 8565
(1991); Pierre R. Villeneuve and Michel Piche, Phys.
Rev. B 46, 4969 (1992); 46, 4973 (1992); W. M. Robert-
son et al. , Phys. Rev. Lett. 68, 2023 (1992); J. B. Pendry
and A. MacKinnon, Phys. Rev. Lett. 69, 2772 (1992).

[11]E. Yablonovitch, J. Phys. Condens. Matter 5, 2443
(1993).

[12] E. Yablonovitch, T. J. Gmitter, and R. Bhat, Phys. Rev.
Lett. 61, 2546 (1988).

[13]Sajeev John and Jian Wang, Phys. Rev. Lett. 64, 2418
(1990); Phys. Rev. B 43, 12772 (1991).

[14] B. A. Auld, Mater. Sci. Eng. A 122, 65 (1989).
[15] A. A. Shaulov, W. A. Smith, and B. M. Singer, in

Proceedings of the Ultrasonic Symposium (IEEE, New

York, 1984), p. 539; W. A. Smith, A. A. Shaulov, and B.
A. Auld (IEEE, New York, 1985), p. 642.

[16] W. A. Smith and B. A. Auld, IEEE Trans. Ultrasonics,
Ferroelectrics, Frequency Control 38, 40 (1991).

[17] B. A. Auld, in Ultrasonic Methods in Evaluation of ln
homogeneous Materials, edited by A. Alippi and W. G.
Mayer (Nijhoff, Dordrecht, 1987), p. 227.

[18] B. A. Auld et al. , J. Phys. (Paris) 45, 159 (1984).
[19] S. John, Phys. Rev. Lett. 53, 2169 (1984); P. W. Ander-

son, Philos. Mag. B 52, 505 (1985).
[20] Scattering and Localization of Classical Waves in Ran

dom Media, edited by P. Sheng (World Scientific, Singa-
pore, 1990).

[211 A. Z. Genack and N. Garcia, Phys. Rev. Lett. 66, 2064
(1991).

[22] Ling Ye et al. , Phys. Rev. Lett. 69, 3080 (1992).
[23] Sajeev John, Phys. Rev. Lett. 58, 2486 (1987); Com-

ments Condens. Matter Phys. 14, 193 (1988); Phys. To-
day 44, No. 5, 32 (1991).

[24] E. Yablonovitch et al. , Phys. Rev. Lett. 67, 3380 (1991);
R. D. Meade et al. , Phys. Rev. B 44, 13772 (1991).

[25] S. Datta et al. , Phys. Rev. B 46, 10650 (1992).
[26] P. Sheng and Z. Q. Zhang, Phys. Rev. Lett. 57, 1879

(1986); Qian-Jin Chu and Zhao-Qing Zhang, Phys. Rev.
B 39, 7120 (1989), and references therein.

[27] B. A. Auld, Acoustic Fields and Waves in Solids
(Wiley-lnterscience, New York, 1973), Vols. I and II;
Ruibao Tao and Ping Sheng, J. Acoust Soc. Am. 77, 1651
(1985); L. Dobrzynski, Surf. Sci. Rep. 11, 139 (1990).

[28] M. S. Kushwaha et al. (unpublished).
[29] American Institute of Physics Handbook (AIP, New

York, 1972), 3rd ed.
[30] M. Sigalas and E. N. Economou, Solid State Commun.

86, 141 (1993).

2025


