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A self-consistent many-body approach to quantum noise is presented. Many-photon polarization
eAects produce system-size scaling in quantum dissipative systems. The role of system-size quantum
noise on the dynamics near the bifurcation point in an optical parametric oscillator is investigated, and
nonlinear spectra are presented in the nonadiabatic limit.
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The role of thermal noise in nonequilibrium phase tran-
sitions, symmetry breaking bifurcations, and nonlinear
dynamics is a subject of much interest [1]. More gen-
erally quantum noise, the most fundamental noise source,
is always present and may be most significant, for exam-
ple, in dissipative optical systems [2-9]. A fully quantum
theoretical treatment of the dynamics is then necessary.

In many quantum optical systems, the radiation field
may be considered semiclassical since quantum Auctua-
tions are typically small and perturb the classical Max-
well field only weakly. In cavity quantum electrodynam-
ics [10,11], however, reduced dissipation and resonant
coherent couplings produce large quantum Auctuations
and intrinsically nonperturbative, quantum dissipative dy-
namics. This is often very diScult to treat theoretically
and general dynamical information in the form of corre-
lation functions, the eAects of quantum noise near a bi-
furcation, and the coherence properties of the output is
not readily extracted. The description of such phenome-
na presents a challenging problem in nonequilibrium
quantum statistical physics. Ideally one would like to
have a method for the systematic computation of physical
observables, such as those measured by photodetection,
which also provides insight into the underlying physics.
Here we show that a many-body theory based on none-
quilibrium Green functions satisfies both criteria. Dy-
namical information is calculated by a self-consistent
theoretical approach, and a novel perspective on non-
linear scattering phenomena results in terms of many-
body photon polarization processes which scale with sys-
tem size.

%e consider the example of an optical parametric os-
cillator (OPO) operating below threshold. This is de-
scribed below. The semiclassical linearized theory of
quantum Auctuations predicts quadrature squeezing of
the signal output, which increases as threshold is ap-
proached [3,9]. Divergence of the quadrature ffuctua-
tions at threshold signifies the breakdown of the theory in
the vicinity of the bifurcation point. The threshold pho-
ton number in the pump mode, nth, determines the intrin-

dp 1
[H~+H2, p]+ g [2a;pa; —a; a;p —pa; a;j,Ij I

dT 16 i=1

where p is the density operator, i = y~t is time measured
in units of the inverse damping rate y] of the subhar-
monic mode 1, y2 is the damping rate of the pump mode,
and the Hamiltonians are defined by

Ht =i@ [a ' —a']
2

(2)
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Here p is a normalized pump parameter, proportional to

sic scale of quantum fluctuations. This is the system-size
parameter, and scales approximately in proportion to
(QV/d), where Q is the quality factor, V the eff'ective

volume of the cavity, and d the nonlinearity of the medi-
um [12]. Typically n&h)) 1, so that except in the vicinity
of threshold, linearization is valid. For small systems,
however, reduced thresholds are expected, and many-
body photon scattering phenomena which scale with the
system size become important. These processes funda-
mentally alter the nature of the nonequilibrium phase
transition predicted by mean-field theory, and the coher-
ence properties of the output. This is also to be expected
in the "thresholdless" microcavity lasers [11].

The OPO comprises two discrete optical cavity modes,
the subharmonic and pump, which interact due to the
presence of the nonlinear intracavity crystal. The non-
linearity enables pump photons with frequency cu2=2m&
to split into two subharmonic photons of frequency cu],
and vice versa. The pump is driven by a resonant exter-
nal field, and both modes are damped due to loss through
the cavity mirrors. This enables a nonthermal equilibri-
um to be established. Our model of the OPO below
threshold is unitarily equivalent to the master equation of
Drummond, McNeil, and Walls [5],
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the pump laser amplitude, and varies in the range
0 ~ p ~ 1 between zero pumping and threshold. At
threshold the subharmonic undergoes a second order
phase transition and attains a nonzero amplitude. Above
threshold an additional Hamiltonian term proportional to
this amplitude must be included in Eq. (1). The system-
size parameter n&h corresponds physically to the intracavi-
ty pump photon number at threshold. In terms of the
usual dimensional parameters of Ref. [5], nih ()'1/x)
and p =xc2lyi y2.

In the limit of infinite system size, n&h ~, the theory
reduces to the usual linearized theory, and predicts per-
fect quadrature squeezing at threshold [9]. Such an ap-
proximation is, however, not uniformly valid in p, in par-
ticular at threshold p=l, as is evident from the diver-

gence in fluctuations of the antisqueezed quadrature and
the subharmonic photon number. Thus in addition to the
intrinsically nonlinear regime when n&h —1, system-size
eAects are important even for n&h)) 1 in the vicinity of the
phase transition where fluctuations are generically large.

In the nonequilibrium Green function technique [13-
17] one deals with a matrix Green function propagator in

the form

FIG. 1. Diagrammatic representation of fundamental, ener-

gy conserving (at each vertex), parametric scattering processes,
which are used to renormalize the Green function propagators.
The first diagram represents subharmonic photons (directed
line) scattering from the mean pump field (dotted line). The
second and third diagrams represent photon polarization pro-
cesses: parametric scattering of subharmonic and pump pho-
tons.
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where, since we are interested in the steady state, we have
used time-translation invariance to introduce the Fourier
transforms

d. .'-of~(t+. , t), (5)—ao

with 6 =D or S. We note that Eq. (4) corrects an ex-
pression given by Zaidi [13].

To proceed we transform to an interaction picture in

which the operators evolve according to the cavity reser-
voir coupling alone, and we denote these with a caret
[15]. The Hamiltonian interactions appear in the path-
ordered 5 matrix S„e.g. ,

where T and T are the Dyson time and antitime ordering
operators, respectively, and (A, B)=(AB) —(A)(B). —Kel-

dysh introduced the path ordering operator T„which en-
ables the matrix elements to be written in compact form
iDf~(t, t') =(T, [ ta(t~) (atg)]) [14]. In addition to the
normal propagator, 2)f (t, t') =(T, [a;(tt)a;(tel)]) defines
the anomalous propagator matrix. These are recognized
as the phase dependent correlation functions responsible
for squeezing in the semiclassical limit. The output quad-
rature Auctuation spectrum for the subharmonic mode,
normalized to unit shot noise level, is given by

V {Xi ~, ro ) =
1 + 2 ji D; + {ro ) +i D ~

+ ( —ro )

i5, = T,exp —— [H i (t ) + H2(t )]dt
Q &c

The 5 matrix is expanded in powers of the interaction,
and %'ick's theorem is used to perform contractions of
the multitime correlation functions [16]. The result can
be presented in diagrammatic form, and Feynman rules
for the parametric interactions deduced [15,17]. The
fundamental, parametric scattering processes are illus-

trated diagrammatically in Fig. 1. All possible scattering
events are constructed from these basic diagrams. The
renormalized Green functions, ignoring vertex corrections
in the limit 1((n&h(~, are illustrated in Fig. 2. The
corresponding matrix Dyson equations for the subhar-
monic and pump modes are given by (details will be pub-
lished elsewhere [18])

Dl(m) =D, (~)+Di(m)U|(m)D, (~),
D i (ro) =D i (to) +D i (ro) [ —pa 3]$1(to)

2)~(co) =D& ( —co) [ pcr3]D)(ro), —

D2( ) 3D2( ) +22( )02( )D2(

where o3 =diag(1, —1) is the third Pauli matrix, and su-

perscript T denotes a real transpose; D] is a partially re-
normalized Green function for the subharmonic, and D~

and D2 are the empty cavity Green functions for the
subharmonic and pump, given in the Markov approxima-
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FIG. 2. Diagrammatic representation of the Dyson equations
for the propagator matrices. Thin and thick directed lines rep-
resent empty-cavity and fully renormalized propagator ma-
trices, respectively, while the anomalous propagator matrix is
represented by a two-way directed line. A partially renormal-
ized propagator matrix is denoted by a directed line composed
of two thin lines. The mean pump Geld, given by a broken line,
has one free end.

photons from the mean pump field of amplitude p to
infinite order. This is reminiscent of the coupling be-
tween normal and anomalous propagators in an interact-
ing Bose gas or superconductor, due to the scattering of
noncondensate particles from the condensate mean field
[17]. The quantum fluctuations of the pump field do not
affect the subharmonic at this level of approximation.

In the nonperturbative regime, with nth finite, the
quantum fluctuations of the pump eff'ectively dress the
subharmonic empty cavity propagator D~ D] as a re-
sult of many-body parametric scattering processes from
the quantized pump field; these are incorporated in the
subharmonic polarization Di [13]. Of course these
scattering processes also modify the empty cavity propa-
gation of pump photons, which then reacts back on the
subharmonic mode. This backaction is properly account-
ed for by the polarization H2.

Nonperturbative results for the second order coherence
gi (r) and intensity fluctuation spectrum VI(co) are also
of interest. In many-body theory, these quantities involve
the calculation of the polarization propagator —a special
case of the two-particle Green function. Normalized to
unit shot noise,

tion by

D)(co) =
0

N+$

1
—2i

—N+i N +1

VI(co) =1+2(ni) „dr [gi (r) —lie' ',
where (n i) is the mean subharmonic photon number,
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with 1 =yz/yl. The many-body polarization matrices 0;,
represented by the bubble diagrams in Fig. 2, scale with
the system-size parameter nth, and have matrix elements

—inl't'(co) = - dco'D&)'( —co')D2&(co —co'),1 aP
nth 2z ~

(10)
f+ 00—ir12i'(co) = " dco'Dii'(co')Di~(co co') . —

nth 2z "—
We obtain nonperturbative solutions to the Dyson equa-
tions (8)-(10) numerically, by self-consistently iterating
until convergence is achieved. The main difticulty, i.e.,
calculation of the polarization parts, is e%ciently handled
by the use of fast Fourier transforms [18].

To gain some insight into these expressions, first con-
sider the limit nth ~, in which the polarization parts
vanish, and the partially renormalized propagator D

&

Di, the empty cavity propagator. Equations (8) then
reduce to the linearized quantum theory of the OPO.
The coupling between normal and anomalous propagators
accounts for the parametric scattering of subharmonic
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FIG. 3. Spectrum of squeezing at 95% of threshold
(p =0.95), 1 =0.1, for nth =600 (solid line), 10' (dash-dotted
line), 10 (dashed line), and linearized (+).

and the polarization propagator is defined

i Pi +(r) =(T,lai (0 —)ai (r —) a(ir )+a (i~0)]). (13)

We solve for the polarization propagator diagrammati-
cally using an approximation which excludes any vertex
corrections. This is the usual Hartree-Fock approxima-
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old as one expects. Both of these features are understood
in terms of the many-body polarization of subharmonic
photons by parametric scattering from the pump.

In summary, we have shown that a many-body ap-
proach provides a powerful method for the analysis and
interpretation of nonlinear quantum dissipative phenome-
na in quantum optics.

This work was supported in part by NATO. S.S. ac-
knowledges support from the Science and Engineering
Research Council.
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FIG. 4. Second-order correlation function, gf 1(r), for the
same parameters as Fig. 3. Inset shows the corresponding in-
tensity fluctuation spectrum, Vt(to), with unit shot noise.

tion for a two-particle Green function, except that here
we must renormalize anomalous propagators also. For
the OPO system, the lowest class of vertex corrections in-
volves pump mode Green functions proportional to I/nth.
Provided n&h is not of order unity or smaller, it is reason-
able to drop these contributions. In this pseudo Hartree-
Fock approximation, the polarization propagator is given

by

where Dt +(r) and 2)~++(r) are the fully nonlinear
Green functions calculated self-consistently as outlined
above.

We remark that the many-body theory agrees with the
nonlinear adiabatic theories [4-8] in the limit I » I for
the calculation of single time averages. Dynamical ob-
servables are calculated by self-consistent iteration of the
Dyson equations (8) until convergence. Figure 3 shows
the squeezing spectrum (4) in the nonadiabatic regime,
I =0.1 and p=0.95 (95% of oscillation threshold) for
various system sizes, nth=600, 10, 10, and ~. As ex-
pected, the squeezing is reduced in the quantum limit.
The effects of finite system size embodied in the many-
photon polarization processes are thus quantified. Near
the bifurcation point system-size scaling is quantitatively
important, with a central peak emerging for small enough
system size, nth =600 and 1000. In Fig. 4 we plot the
second order coherence and intensity fluctuation spec-
trum for the same parameter set as Fig. 3. Nonexponen-
tial decay of the correlation function is evident for finite
system size, as a result of the non-Gaussian Auctuations.
The intensity Auctuation spectrum shows that system-size
eA'ects substantially suppress the fluctuations near thresh-
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