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We introduce models incorporating an adaptive self-regulatory feedback mechanism on an ex-
tended chaotic lattice. Numerical experiments show that our system gives rise to a host of novel
spatiotemporal phenomena characterized by a rich variety of "phases" in parameter space. Moreover,
interestingly, certain phases exhibit distinct scaling properties and 1/f noise.

PACS numbers: 05.45.+b

The dynamics of networks of chaotic elements is impor-
tant not only as a model for complex nonlinear systems
with many degrees of freedom, but also from the view-
point of possible engineering applications [1]. Here we

introduce a model of adaptive dynamics [2] in a lattice of
chaotic elements. Our system is spatially extended, with
local nonlinear dynamics along with a self-regulatory pro-
cess incorporated as threshold dynamics. Such systems
are relevant in the context of a variety of physical and
biological phenomena (and even in social sciences such as
economics). Our motivation for this study is to investi-
gate the wealth of spatiotemporal structures this model is
likely to yield, and characterize its "phases, " pattern dy-
namics, and scaling relations in time and space (if any).

We first introduce a one dimensional unidirectional
model. In our model, time is discrete, labeled by n,
space is discrete, labeled by i, i = 3. , N, where N is sys-
tem size, and the state variable x„(i) (which in physi-
cal systems could be quantities like energy or pressure)
is continuous. Each individual site in the lattice evolves
chaotically under a suitable nonlinear map f (z) Here we.
choose f(x) to be the logistic map, which has widespread
relevance as a prototype of chaos. So f(x) = 1 —az,
x = [

—1.0, 1.0], with the nonlinearity parameter a chosen
in the chaotic regime (a = 2.0 in all subsequent numeri-
cal experiments). On this chaotic lattice we incorporate
a self-regulatory threshold dynamics [3]. The adaptive
mechanism is triggered when a site in the lattice exceeds
the critical value x, (—1.0 ( x, ( 1.0), i.e. , when a cer-
tain site x„(i) ) x, . The supercritical site then relaxes
by transporting its excess bx = [z„(i)—z,] to its neighbor
as follows:

X~ l ~ Xc~

x„(i+1) z„(i+ 1) + b'x. (1)
This algorithm thus induces a unidirectional nonlinear
transport down the array (by initiating a domino effect).
Note also that the model respects local conservation laws.
The boundaries are open so that the "excess" may be
transported out of the system [4].

Note that the dynamics depends on the algorithm
for autonomously updating each site and propagating
threshold coupling between sites. Here we have studied
the case where these two evolutionary steps are carried
out separately. The adaptive dynamics begins after each
step in the site dynamics and continues until the system

has reached a steady state where all sites are less than
critical; i.e. , all x(i) ( x„and the system is station-
ary, after which the next step in the site dynamics takes
place. So the time scales of the two dynamics, the intrin-
sic chaotic dynamics of each lattice site and the adaptive
relaxation, are adiabatically separable. The relaxation
mechanism is much faster than the chaotic evolution, and
this enables the system to relax completely before the
next chaotic iteration [5]. We can also introduce a ran-
dom driving force in our model. Under this, the system is
perturbed at some site j in the lattice: z„(j)~ x„(j)+o.
where o is the strength of the perturbation and j is cho-
sen at random [6]. The random driving force, likewise,
operative at time scales comparable to the chaotic dy-
namics, is much slower than the adaptive dynamics. (It
would be interesting of course to study a variation of the
above model with the threshold dynamics being incorpo-
rated simultaneously with the intrinsic dynamics or with
very small 6).

The relevant parameters in the model are the critical
x„ the strength of perturbation, a, and the system size
N. The simulations are done with random initial condi-
tions for the z(i) and we allow all transience to die. The
quantities of interest are the temporal evolution of (a)
the individual sites xn(i) and (b) the "avalanches" (to
borrow the language of self-organized criticality), which
are defined as the total number of "active" sites, i.e. ,
sites that have "moved" (or dissipated energy) during
the adaptive relaxation, denoted by 8. Avalanches are
thus equivalent to the total dissipation in the system due
to self-regulation. The spatial aspects of interest are the
distribution of z(i) and the presence of clustering and co-
herence in space as indicated by the cluster distribution
at any point in time [7].

Results of numerical simulations indicate that the most
significant parameter in the model is the critical x, and
the dynamics is determined principally by it. Variation
of x, leads to the emergence of the following "phases" in
parameter space: The first phase is the fixed point region
which occurs when x, ( 0.5. Here the system goes to a
coherent state where all sites x„(i) = x, for all times
(after transience). This phenomenon is independent of
the perturbation strength and system size. For finite
perturbation strengths (o ) 0), all avalanches are equal
to system size (that is, all sites move in order to relax).
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This behavior can be understood from the x„vs x„+i
graph of a single logistic map. For x~ ( 0.5 this graph lies
above the 45 line indicating that in this region x„+q &
x„. So, the configuration x(i) = x„ i = 1, N is stable, as
the subsequent iteration will make all x(i) & x, and the
adaptive feedback will come into effect and the system
will be brought back to x, . It is also easy to see that
the size of the avalanche will thus be equal to N. [Finite
perturbation will not alter this picture as the effect of the
driving force is simply to enhance the x at some random
site, say j, which leads to x„(j)—+ x„(j)+ o. & x, .

When x, = 0.5 we still have a coherent state with
all x(i) = x„but the avalanches are now uniformly
distributed about the mean (= K/2), and the power
spectrum of the temporal evolution of the avalanches
is that of white noise. The dynamical system at this
point in parameter space is marginally stable. Here
x„+i(i) = f(x„(i)) = x„(i), and the adaptive dynamics
is triggered off only by the random driving force. When
the perturbation strength is zero there are never any ac-
tive sites in the lattice (i.e. , all avalanches are of size
zero .

When 0.5 & x, ( 1.0, the dynamics of each individual
site is attracted to a cycle whose periodicity depends on
x, . Here we briefly give some examples of the varied phe-
nomena emerging from tuning x, : for 0.5 ( x, ( 0.8, we

get distinct two-cycles in the temporal evolution. of the
avalanches and individual sites, for x, = 0.84 we have
a four-cycle, for x, = 0.86 a six-cycle, for x, = 0.88 a
seven-cycle, for x, = 0.9 a ten-cycle, and for x, = 0.98 a
four-cycle again. Typically, small perturbation strengths
allow spatial coherence and for large perturbations the
spatial profile breaks up into clusters of various sizes

(many small clusters and a few large ones). The details
of the different spatiotemporal phases will be published
in a subsequent long paper.

In the above phase, especially for large x, (x, ~ 1.0),
we have an interesting phenomenon: here system size N
is significant and plays a crucial rote in spatiotemporal
organization. For small arrays, the system exhibits ap-
proximate periodicities, with the avalanches and individ-
ual sites displaying long periods of laminar flow (cyclic
evolution) with intermittent irregular bursts. (Also note
that the sites at the edges are interrupted more by ir-

regular bursts than the sites in the center of the array. )
Remarkably now, these periodicities get sharper with in-

creasing N, and for large N (typically 100) the cy-
cles get exact. Figure 1 shows the power spectrum of
the temporal evolution of avalanches for a small array
(N = 25) and for a large array (N = 1000). It is clearly
evident that the large lattice supports exact cycles (sharp
clean peak) while only an approximate periodicity exists
in the small lattice (broad and noisy peak). For small lat-
tices, the other remarkable fact is that the low frequency
end of the power spectrum falls as an approximate power
law, S(f) 1/f4', 0 & P ( 1 [8]. This phenomenon is
the ubiquitous 1/f noise seen in a wide variety of natu-
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FIG. 1. Power spectra of avalanches in the unidirectional

model with parameters x, = 0.98, o. = 0.2 and lattice size
equal to (a) 1000 and (b) 25. Here we average over 8 runs of
length 1024 each. The frequency range is (0, 0.5]. The best fit
slope at the low frequency end of spectrum (b) is 0.77+ 0.05.

ral processes ranging from resistance fluctuations to sand
flow in an hourglass, and even in traKc and stock market
movements [9]. We shall subsequently see an extension
of this model where this approximate 1/f behavior gets
more distinct and very clearly defined.

We now introduce an extension of the above model
to bidirectional transport. The modified relaxation algo-
rithm is as follows: if x„(i) & x„ the supercritical site
then relaxes to a value xo (xo ( x,) by transporting the
excess [x„(i)—xo] equally to its two neighbors:

x (i) ~xo,
x„(i+1)~ x„(i+1)+bx,
x„(i—1) ~ x„(i—1)+bx, (2)

where 6x = [x„(i)—xo]/2. A new and important param-
eter here is the quantity xo. %'hen xo = x, the above
model is a direct extension of the unidirectional model.
However, when this is the case, for certain configurations
the system takes infinitely long to reach steady state.
It is not physically realistic though to drive the system
chaotically at an infinitely slow rate. So with 4 finite
we then have some configurations which have not com-
pletely relaxed (i.e. , all avalanches have not come to rest)
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before the subsequent chaotic iteration. Electively, the
dynamics then would be one of "interacting" avalanches,
as the time scales of relaxation and chaotic evolution can
no longer be separated adiabatically [5].

First we consider the case xo ( x, (if xo is chosen to
be —1.0 then this is always valid [10]). Now, in contrast
to the case xo ——x„ the system reaches a steady state
in finite time [4 O(N)], and so the system has com-
pletely relaxed configurations x„(i) (x„i = 1, N, at all
times. For small x„each site has an irregular temporal
evolution with a white noiselike power spectrum. The
avalanches are similar in size, and randomly distributed
about their mean value (which is dependent on system
size). The average (x) of the sites x„(i), i = 1, . . . , N, is
determined by the values of x, and xo, and is statistically
invariant [11].

When xo = x, the dynamics mimics the unidirectional
model closely, and seems to be a noisier or "fuzzier" ver-
sion of it. Thus we find that for x, & 0.5 all the sites are
randomly distributed with a small deviation around their
mean, which is close to x, . The avalanches are all of the
maximum possible size, s~a„[12]. When 0.5 ( x, 0.8
the sites get attracted to noisy two-cycles, as is evident
through the power spectrum of the temporal evolution
of the individual sites, which exhibit a broad peak at
frequency 2. The avalanches evolve as exact two-cycles,
with the size of avalanches alternating between 0 and
s a„. Further, as we tune x, we obtain a noisy four-cycle
at x, 0.84, and so forth.

As x, approaches 1.0 the dynamics, in both cases, gets
complex and we have the following spatiotemporal sce-
nario: the avalanches, interestingly enough, now come
in all sizes. This suggests that energy dissipation (or
response to pertubations) takes place at various scales,
ranging from small rearrangements, where the distur-
bance dies out within a few sites, to large events where
the transport activity is at a wider scale involving all the
elements of the lattice. The distribution of avalanche size
s is interesting: for the case of xo ———1.0, the avalanches
are distributed as a power law, P(s) s &*, and the scal-
ing exponent P, lies between 1.0 to 2.0 [13]. For the case
of x, = xp, the distribution of avalanches is quite novel:
now there is an approximate periodicity evident in the
evolution of the avalanches (for example, a four-cycle for
x, = 0.98), as the system mimics its unidirectional coun-
terpart. A coarse grained distribution P(s) shows that
for small sizes the distribution falls as a power law (with
scaling exponent = 1.0), and then there is an oscillatory
hump at large sizes, indicating an enhanced probability
of getting very large avalanches. This is related to the
fact that there are some avalanches (approximately one
in every four for x, = 0.98) that take infinitely long to
settle down. So the size of these is very large, bounded
only by finite A. These then constitute the hump in P(s)
at large s.

Spatially the x(i) vs i profile is now no longer convex
(as was the case for small x,). In fact x (i), i = 1, . . . , N,
2012
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FIG. 2. Power spectra of avalanches in the bidirectional

model with parameters x, = 0.98, o = 0.1, N = 100, and
A = 41K, for the cases of (a) xo = —1.0 and (b) xo = x, . Here
we average over 8 runs of length 1024 each. The frequency
range is (0, 0.5]. For the lowest frequencies in spectrum (a)
the slope is 0.0, and after that there is a crossover and the
slope in the next region is ~ 0.8 + 0.2. The best fit slope at
the low frequency end of spectrum (b) is 1.13+0.07.

breaks up into several clusters [14] of size c, occurring now
on all scales. For the case of xo ——x, we have a cluster
distribution P(c) quite similar to that for avalanches. For
small sizes P(c) c ~, 1.0 ( P, ( 2.0, and then there
is a hump at large cluster size [15]. For the case of xo =
—1.0 we have a well defined power law behavior for the
cluster distribution over the entire range of c, P(c)
c &, with the exponent P, ~ 2.0. For example, in the
case of x, = 0.98, X = 2500, and o = 0.1 we have

P, = 2.06 6 0.04. In summary, then, the system displays
well defined scaling behavior (over a smaller range for
the case of xo = x, though) and can provide a model
for dynamical states characterized by scale invariance, a
phenomenon ubiquitous in natural systems.

The temporal evolution of the avalanches too yields
novel phenomena for certain ranges of x, (x, is large).
For the case of xo ———1.0, we have a crossover behavior.
The lowest frequencies scale as 1/f, and then there is a
distinct crossover to 1/f~, where P 1.0 [see Fig. 2(a)].
For the case of xo ——x„something remarkable happens:
first, we have a pronounced (though broad and noisy)
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peak at the frequency corresponding to the cycle found
in the unidirectional model at that parameter value, indi-
cating an approximate periodicity in the system [16]. For
low frequencies though, interestingly, we now have clear
evidence of 1/f noise. For instance, for the specific ex-
ample of x, = 0.98, we have a peak at f = 4, and for low

f, S(f) I/f~, where the best fit value of the exponent
is 1.13 + 0.07 [see Fig. 2(b)]. This kind of "fiicker noise"
is widely observed in nature [9] and it is thus of great
interest that our model yields this phenomenon. (Note
that the spectrum is similar to the one observed in the
unidirectional case for small lattices [Fig. 1(b)]. How-
ever, the 1/f behavior is more pronounced and clearly
evident here, even at the lowest frequency end, i.e. , when

f ~0.)
In conclusion, the model we have proposed provides a

rich repertoire of behavioral patterns. Further, we can
consider several natural extensions of it, such as diferent
nonlinear evolution functions f(x(i)) in the local dynam-
ics (e.g. , logistic maps with different nonlinearity param-
eters, or the circle map and the tent map) or suitable
higher dimensional versions [17]. Most importantly, we
can proceed to extend this general model to more realis-
tic and explicit examples relevant to physically realizable
situations.
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set of phase points where the state variables have value
—1.0 ( x & xc.
The x(i) vs i profile is always convex (except for a few

sites), with the sites at the edges having smaller x values
than the central sites.
When x ( 0.5 and b, O(N), the entire system is very
far from its relaxed steady state at most times. In such
a situation, periodicities tend to develop in the evolu-
tion of the avalanches and sites, and spatially the x(i) vs
i profile is convex with supercritical sites in the center.
As D increases the x(i) profile gets flatter, though still
supercritical in the center, and temporally the periodici-
ties give way to a white-noise-like spectrum for x„(i); the
avalanches are now always of the maximum possible size,
s „,where s „depends on N and A.
The exact value of the exponents depends on the system
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The extent of the clusters is defined by the number of
consecutive sites for which this inequality holds: x„(i)—
x„(i + 1) ( e. Here e = 0.1.
The unidirectional model has a similar distribution of
clusters for large x, . There, too, the clusters have a power
law distribution, P(c) c ~, for small c, and then there
are some very large clusters which give rise to a hump in

P(c) at large sizes.
Here, too, the system size N aids spatiotemporal orga-
nization. As N becomes larger, the periodic peak gets
more enhanced, i.e. , sharper and larger in magnitude. Be-
cause of computational limitations we have not checked
whether these periodicities get exact, as in the unidirec-
tional case, for very large N.
For details see S. Sinha, in Proceedings of Fractal 93,
England, 1993 (to be published).
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