Octupole Collectivity in the Ground Band of ¹⁴⁸Nd

R. Ibbotson, ¹ C. A. White, ^{2,*} T. Czosnyka, ³ P. A. Butler, ² N. Clarkson, ² D. Cline, ¹ R. A. Cunningham, ⁴

M. Devlin, K. G. Helmer, T. H. Hoare, Z. J. R. Hughes, $5, +$ G. D. Jones, 2 A. E. Kavka,

B. Kotlinski, ^{1, §} R. J. Poynter, ⁵ P. Regan, ^{5, ||} E. G. Vogt, ^{1, ¶} R. Wadsworth, ⁵ D. L. Watson, ⁵

and C. Y. Wu¹

 1 Nuclear Structure Research Laboratory, University of Rochester, Rochester, New York 14627

 2 Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 3BX, United Kingdom

 3 Warsaw University, 02-097 Warszawa, Banacha 4, Poland

⁴ Science and Engineering Research Council, Daresbury Laboratory, Warrington WA4 4AD, United Kingdom

⁵Department of Physics, University of York, York Y01 5DD, United Kingdom

(Received 15 March 1993)

E3 matrix elements have been determined for transitions between states up to I^{π} =13⁻ in ¹⁴⁸Nd, providing direct evidence for strong octupole collectivity in a rotational band. These values, as well as the corresponding $E1$ and $E2$ matrix elements, were obtained from Coulomb excitation data using 58 Ni and 92 Mo ions, projectile excitation using a 208 Pb target, and from recoil distance lifetime measurements. The results are consistent with collective model predictions for 148 Nd assuming intrinsic quadrupole and octupole moments of $Q_{20} \approx 400 \text{ e fm}^2$ and $Q_{30} \approx 1500 \text{ e fm}^3$. The E3 strength coupling the negative-parity states to the β band is found to be appreciable.

PACS numbers: 23.20.Js, 21.60.Ev, 27.60.+j

The experimental study of nuclei with $Z = 54$ –60 and $N \approx 88$ populated by α -induced reactions [1] and fission [2] has revealed the presence of interleaved negativeand positive-parity yrast bands that are coupled by enhanced E1 transitions. This behavior, which is characteristic of reBection-asymmetric shapes, has been interpreted within the mean-field approach as arising from the presence of an octupole deformation, i.e., $\beta_3 \neq 0$ [3,4]. Measurement of enhanced E3 matrix elements connecting these states would provide unambiguous and direct evidence for collective octupole correlations. Although the $E3$ matrix element between the ground state and lowest 3^- state has been measured for many nuclei [5] including 148 Nd [6], no measurement has yet been made of the E3 matrix elements as a function of spin for an octupole band. This is because real photon E3 emission typically is about 10^4 times weaker than competing $E1$ and E2 decay. The observed El transition strengths are known to be an unreliable indicator of octupole correlations because they are strongly affected by large single particle contributions [7,8]. Heavy-ion Coulomb excitation provides a sensitive means of measuring E3 matrix elements since E3 excitation can be an order of magnitude stronger than competing $E1$ excitation. This has been exploited in this work to carry out the first measurements of $E3$, as well as $E1$ and $E2$, matrix elements for a possible octupole collective band in 148 Nd. During the progress of this work, similar studies of $2^{26}Ra$ [9] and 150 Nd [10] were undertaken.

Presented here are the results of such measurements on 148 Nd following Coulomb excitation with 58 Ni ions, ⁹²Mo ions, and a ²⁰⁸Pb target in which both γ -ray yields and lifetimes were determined. A summary of the experiments performed is as follows:

(i) A beam of 200 MeV 58 Ni, provided by the Rochester tandem Van de Graaff accelerator, bombarded a selfsupporting 1 mg/cm² Nd target enriched to 93\% 148 Nd. The scattered Nd and Ni ions were detected in kinematic coincidence using a parallel plate avalanche counter (PPAC) covering the angular range $14^{\circ} \le \theta \le 76^{\circ}$, and ⁵⁸Ni ions were detected in a PPAC covering 110° \leq $\theta \leq 150^{\circ}$. This detector system is described elsewhere [11,12]. The γ rays were detected in coincidence with scattered 58 Ni and recoiling 148 Nd ions using five Compton-suppressed Ge spectrometers, positioned 15 cm from the target. Measurements of the coincidence γ -ray yields were binned into four ranges of scattering angle, so that the dependence of the Coulomb excitation on impact parameter could be exploited.

(ii) Particle- γ and particle- γ - γ coincidences were measured following the bombardment of the previously described target with 330 MeV 92 Mo ions, provided by the Nuclear Structure Facility, Daresbury. The γ rays were detected by POLYTESSA [13] consisting of twenty Compton-suppressed Ge detectors, and the scattered ions were detected in PPACs subtending an angular range of $104^{\circ}-154^{\circ}$ [8]. In this experiment, transitions from both the positive- and negative-parity states in the octupole band were observed up to spins 10^+ and 9^- , respectively (see Fig. 1). Gamma-ray intensities were determined, in coincidence with all backscattered Mo ions, at four selected Ge detector angles.

(iii) An isotopically pure beam of 700 MeV 148 Nd, provided by HHIRF, at the Oak Ridge National Laboratory, was excited by a 0.2 mg/cm² self-supporting ^{208}Pb target. Nd and Pb ions were detected in kinematic coincidence using a PPAC covering $14^{\circ} \le \theta \le 76^{\circ}$ [11]. The γ rays were detected (in coincidence with both ions) by sixteen Compton-suppressed Ge detectors in the Spin Spectrometer, which measured the total energy of the entrance states and the multiplicity of the γ -ray decay. The γ -ray yields were binned into five ranges of θ_{Nd} .

1990 0031-9007/93/71 (13)/1990(4)\$06.00 1993 The American Physical Society

FIG. 1. Partial level scheme for 148 Nd.

(iv) Lifetimes of nine excited states in 148 Nd were measured using the recoil distance method, following inelastic scattering of 58Ni ions at a bombarding energy of 210 MeV. This experiment has been described in more detail elsewhere [14].

Previously identified levels [1,15,16] and the levels identified in this work are shown in Fig. 1. For the ⁵⁸Ni and ⁹²Mo work the $3 - \rightarrow 2^+$ transition was obscured by the lowest $(2^+ \rightarrow 0^+)$ transition in ¹⁴⁴Nd, the 338 keV transition $(10^{+} \rightarrow 9^{-})$ is contaminated by the $6^+ \rightarrow 4^+$ transition in ¹⁵⁰Nd, and no transitions from states above the 10^+ state were observed. In all these experiments, the 615 keV γ ray (10⁺ \rightarrow 8⁺) is a doublet with the $0^+_2 \rightarrow 2^+_1$ transition. E2 transitions within the negative-parity band were not observed in these two experiments, but transitions deexciting the quasi- β and - γ vibrational bands [16] were observed.

The Pb experiment was free of the isotopic contamination problems present in the first two experiments. The 13^- state was the highest spin observed in the Pb experiment with sufficient transition strength to be analyzed, and several E2 transitions within the negativeparity band were observed. Particle-particle- γ - γ events were used in conjunction with the γ -ray multiplicity to make assignments of unknown γ transitions. Assignments based on the present work were made using the Mo and Pb particle- γ - γ data for the 13⁻, 12⁺, 4⁺_{*a*}, 6⁺_{*a*}, 8^+_6 , 3^+_γ , 4^+_γ , and 6^+_γ levels. The levels shown in Fig. 1 comprise all but 8 of those known to lie within 2 MeV of the yrast line up to spin 13^- .

A total of 2158 independent data points (2148 γ -ray yields, 9 lifetimes, and a previous measurement of the decay width $\Gamma_{1^- \rightarrow 0^+}$ [17]) were used with the semiclassical Coulomb-excitation least-squares search code, GosIA

[18], to fit 227 $E1, E2, E3$, and $M1$ matrix elements for 148 Nd. A total of 140 of these matrix elements were determined with moderate error limits. The relative phases of the wave functions were chosen by fixing the sign o one in-band $E2$ transition matrix element leading to each state, and one $E3$ matrix element between the positiveand negative-parity bands. The other signs are observables. In order to take into account effects due to virtual excitation, the rigid-rotor model was used to constrain the possible values of matrix elements with $\lambda=1, 2, 3$ for unobserved transitions involving states with $I > 13^-$. In these calculations the E4 matrix elements were constrained to lie within a range of values determined by a previous measurement of $\langle 4^+ ||E4||0^+ \rangle = 3600 e$ fm⁴ [6] and the predictions of the axial rigid-rotor model. The effect of varying the $E4$ values was tested; the resulting changes in the $E1, E2,$ and $E3$ matrix elements were less than 10^{-6} e fm, 5 e fm², and 70 e fm³, respectively, which are much smaller than the assigned errors. Matrix elements connecting states in the quasi- β and - γ bands also were included in the fit. The overall value of the $\chi^2,$ normalized to the number of data points in the fit, was 1.01. The extracted values of the $E1$, $E2$, and $E3$ matrix elements for the yrast states are shown in Figs. $2, 3$, and 4, respectively. The errors shown take into account cross-correlation effects.

The enhanced E2 matrix elements [e.g., $B(E2; 2^+ \rightarrow$ (0^+) = 55 Weisskopf units (W.u.) for the positive-parity states follow the predictions of the rotational model, i.e.,

$$
\langle J_f || E\lambda || J_i \rangle = a_{\lambda} Q_{\lambda 0} (2J_i + 1)^{1/2} \langle J_i 0 \lambda 0 | J_f 0 \rangle,
$$

with an approximately constant intrinsic moment $Q_{\lambda 0}$. The negative-parity states show a systematically smaller intrinsic-frame quadrupole moment for lower spins. The

FIG. 2. Ground-band El matrix elements. Curve corresponds to rotor predictions assuming $Q_{10} = 0.25$ e fm.

measured static E2 moments are consistent with the assignment of a prolate intrinsic shape for this nucleus except that the static $E2$ moment for the 1^- state is considerably smaller than the rotor prediction. The $E2$ systematics are illustrated by the summed $B(E2)$ strengths involving each state. These summed strengths (\langle [E2 \times $E2]^{\Delta J=0}$)) can be related directly to the intrinsic-frame quadrupole moment [19]. The summed E2 strengths for the ground-state band are fairly constant for spins >5 , with a value of $\approx +20000 e^2$ fm⁴. The measured intrinsic collective moments, $Q_{\lambda 0}$, can be related to the deformation coordinates β_{λ} using the formalism of Leander and Chen [20]. The summed strength involving the ground-, β -, and γ -band states corresponds to a β_2^{rms} $=+0.20$. Summations involving only ground-band states correspond to 90% of the E2 strength.

The ground-band E3 matrix elements follow the trend of the rotational model predictions for a $K = 0$ band, assuming a $|Q_{30}| \approx 1500$ efm³ ($|\beta_3| \approx 0.12$), but for lower spins the E3 matrix elements exhibit a stagger (positive- and negative-parity states are shown with different symbols in Fig. 4). This stagger could be indicative of mixing with higher $K \neq 0$ states, although a survey of rare-earth nuclei with $Z \geq 50$ [21] has revealed little evidence for this. Nevertheless, such K mixing also could explain the anomalously small value of the static quadrupole moment of the $1⁻$ state. The measured value of $B(E3;3^- \rightarrow 0^+) = 36$ W.u. is in good agreement with the previous measurement $[6]$. The E3 matrix elements connecting the negative-parity states to the β band are unexpectedly large, being about half of those to the ground band. This is reflected in the summed $B(E3)$ strengths for the negative-parity band which are fairly constant, with $\approx 30\%$ of the $B(E3)$ strength coupling to the β band, while the B(E3) strength involving the gamma band accounts for $\langle 10\% \rangle$. This shows a considerable fractionation of the E3 strength among the $K = 0$ bands.

The E1 matrix elements are fairly constant for $I < 5$ 1992

FIG. 3. Ground-band E2 matrix elements. Curve corresponds to rotor predictions assuming $Q_{20} = +400 e \text{ fm}^2$. Matrix elements connecting positive-parity states are plotted with crosses; matrix elements connecting negative-parity states are plotted with diamonds.

 $[B(E1; 1^- \rightarrow 0^+) = 0.0016 \text{ W.u.}].$ Above $I \approx 7$, the $\langle I||E1||I-1\rangle$ are consistent with the value of $Q_{10} = 0.23$ e fm given by recent experiments $[1,22]$, and agree reasonably well with estimates [1,23], but are lower than calculations [24] using more appropriate shape pararneters, which predict $Q_{10} = 0.34$ efm. The relative signs of the $E1$ and $E3$ matrix elements have been fixed in the $\,$ present analysis so that Q_{10} and Q_{30} have the same sign. This relative phase is taken from Ref. [24] and is the same as that expected for a deformed liquid drop [25] alone using Strutinski's method to calculate the dipole moment. This phase of the product $E1 \times E3$ could not be measured uniquely, since comparable fits were obtained with either choice of this phase, resulting in similar magnitudes for the $E1$ and $E3$ matrix elements.

Mean-field calculations which allow octupole deformation have been made for 148 Nd [1]. These give

FIG. 4. Ground-band E3 matrix elements. Curve corresponds to rotor predictions assuming $|Q_{30}| = 1500 \text{ e fm}^3$. Matrix elements for even I are plotted with crosses; matrix elements for odd $\cal I$ are plotted with diamonds.

an octupole-deformed configuration at spin 7-8 with mean values of the deformation parameters of $\overline{\beta}_2=+0.20$, $\overline{\beta}_3 = 0.075$ lying close in energy to the reflection symmetric minimum with $\overline{\beta}_2=+0.22$ and $\overline{\beta}_3=0$. The value of $|\beta_3^{\rm rms}|$ extracted from the centroid of Q_{30}^2 depends on the magnitude of the octupole moment at the minimum, and the softness of the nucleus to octupole deformation. Nazarewicz and Tabor [23] have investigated the effect of varying the barrier height between the octupole minima upon the $K^{\pi} = 0^{+}$ - $K^{\pi} = 0^{-}$ energy level splitting and the $B(E3)$ transition rate between the bands. They find that although the energy levels are very sensitive to the barrier height, the $B(E3)$ remains almost constant for large barrier height (octupole deformed) and almost zero barrier (octupole vibrator). It therefore appears that while the existence of strong octupole collectivity can be demonstrated in 148 Nd, the present data are insufficient to determine the degree of octupole softness.

In summary, a comprehensive set of $E1$, $E2$, and $E3$ matrix elements are presented for ¹⁴⁸Nd. The yrast band $E2$ and $E3$ matrix elements are consistent with predictions of a model which assumes a rotating shape having, on average, $Q_{20} \approx +400 \text{ e fm}^2$ ($\beta_2 \approx +0.18$), and $|Q_{30}| \approx 1500$ efm³ ($|\beta_3| \approx 0.12$), with a considerable stagger for low spins. These results are sensitive only to the centroid of Q_{30} , not the distribution width. The $B(E3)$ values coupling the negative-parity states to the β band are roughly half the magnitude of the $B(E3)$ values in the ground band. This measurement of the E3 matrix elements up a collective band provides unambiguous evidence for strong octupole collectivity in the ground band f 148Nd

We are very grateful to W. Nazarewicz for stimulating discussions. This work was supported by the U.K. Science and Engineering Research Council, and by the U.S. National Science Foundation. $C.A.W.,$ N.C., T.H.H., J.R.H. , and P.R. acknowledge SERC studentships. R.J.P. acknowledges an SERC fellowship. T.C. acknowledges grants from the British Council and the Polish State Committee for Scientific Research.

- Present address: NSRL, University of Rochester, Rochester, NY 14627.
- Present address: Lawrence Livermore National Laboratory, Livermore, CA 94550.
- [~] Present address: Gammadata Matteknik AB, Box 1815, S-75148 Uppsala, Sweden.
- § Present address: Paul Scherrer Institut, F1 Division, LG-D22, CH-5232 Villigen PSI, Switzerland.
- ^{Il} Present address: Department of Nuclear Physics, Research School of Physics, Science and Engineering, Australian National University, Canberra, Act 2601 Australia.
- [~] Present address: Sektion Physik, Universitat Munchen, Am Coulombwall 1, D-8046 Garching, Munich, Germany.
- [1] W. Urban, R.M. Lieder, W. Gast, G. Hebbinghaus, A. Kramer-Flecken, T. Morek, T. Rzqca-Urban, W. Nazarewicz, and S.L. Tabor, Phys. Lett. B 200, 424

(1988).

- [2] W.R. Phillips, I. Ahmad, H. Emling, R. Holzmann, R.V.F. Janssens, T.L. Khoo, and M.W. Drigert, Phys. Rev. Lett. 57, 3527 (1986).
- [3] G.A. Leander, W. Nazarewicz, P. Glanders, I. Ragnarsson, and J. Dudek, Phys. Lett. 152B, ²⁸⁴ (1985).
- [4] S. Cwiok and W. Nazarewicz, Nucl. Phys. A496, 367 (1989).
- [5] R.H. Spear, At. Data Nucl. Data Tables 42, 55 (1989).
- [6] A. Ahmad, G. Bomar, H. Crowell, J.H. Hamilton, H. Kawakami, C.F. Maguire, W.G. Nettles, R.B. Piercey, A.V. Ramayya, R. Soundranayagam, R.M. Ronningen, O. Scholten, and P.H. Stelson, Phys. Rev. C 37, 1836 (1988).
- [7] G.A. Leander, W. Nazarewicz, G.F. Bertsch, and J. Dudek, Nucl. Phys. A453, 58 (1986).
- [8] R.J. Poynter, P.A. Butler, N. Clarkson, T.H. Hoare, G.D, Jones, C.A. White, J.R. Hughes, N.S. Jarvis, S.M. Mullins, R. Wadsworth, D.L. Watson, R.A. Cunningham, J. Simpson, D. Cline, L. Goettig, and S. Juutinen, Phys. Lett. B 232, 447 (1989).
- [9] H.J. Wollersheim, H. Emling, H. Grein, R. Kulessa, R.S. Simon, C. Fleischmann, J. de Boer, E. Hauber, C. Lauterbach, C. Schandera, P.A. Butler, and T. Czosnyka (to be published).
- [10] N. Clarkson, Ph.D. thesis, 1992, University of Liverpool.
- [11] D. Cline, E.G. Vogt, J. Hall, A.E. Kavka, and W.J. Kernan, NSRL Annual Report, 1987, p. 149.
- [12] F.C. Kowalik, E.G. Vogt, and D. Cline, NSRL Annual Report, 1988, p. 183,
- [13] P.J. Nolan et al., Daresbury Annual Report, 1984-85, pp. 104 and 106.
- [14] R. Ibbotson, B. Kotlinski, D. Cline, K.G. Helmer, A.E. Kavka, A. Renalds, E.G. Vogt, P.A. Butler, C.A. White, R. Wadsworth, and D.L. Watson, Nucl. Phys. A530, 199 (1991).
- [15] J.L. Durell, Y. Abdelrahman, W.R. Phillips, M.A.C. Hotchkis, J. McNeil, B.J. Varley, and W. Gelletly, Daresbury Annual Report, $1987/88$, p. 28.
- [16] T. Karlewski, N. Hildebrand, M. Brügger, N. Kaffrell, N. Trautmann, and G. Herrmann, Z. Phys. A A330, 55 (1988).
- [17] H.H. Pitz, R.D. Heil, U. Kneissl, S. Lindenstruth, U. Seemann, R. Stock, C. Wesselborg, A. Zilges, P. Von Brentano, S.D. Hoblit, and A.M. Nathan, Nucl. Phys. A509, 587 (1990).
- [18] T. Czosnyka, D. Cline, and C.Y. Wu, Bull. Am. Phys. Soc. 28, 745 (1983).
- [19] D. Cline, Annu. Rev. Nucl. Part. Sci. 86, 683 (1986).
- [20] G.A. Leander and Y.S. Chen, Phys. Rev. C 37, 2744 (1988).
- [21] A. Zilges, P. von Brentano, H. Friedrichs, R.D. Heil, U. Kneissl, S, Lindenstruth, H.H. Pitz, and C. Wesselborg, Z. Phys. A 340, 155 (1991).
- [22] A.S. Mowbray et al., Daresbury Annual Report, 1988-89, p. 22.
- [23] W. Nazarewicz and S.L. Tabor, Phys. Rev. C 45, 2226 (1992).
- [24] P.A. Butler and W. Nazarewicz, Nucl. Phys. A533, 249 (1991).
- [25] A. Bohr and B. Mottelson, Nuclear Structure (W.A. Benjamin, Inc., New York, 1975), Vol. 2.

1993