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Comment on "Second-Order Dynamics in the
Collective Temporal Evolution of Complex Systems"

In a recent Letter [1] Binder and Privman argue that it
is possible to explain, using "second-order dynamics, "
some of the interesting behaviors recently discovered by
two of us (Chate and Manneville) [2,3] in classes of ex-
tended systems with local interactions and synchronous
updating in high dimensions. Further, they attribute
such behavior to the discreteness of time. The novel be-
havior discussed in Refs. [2,3] are nontrivial evolution
patterns seen in the density of high-dimensional cellular
automata and coupled map lattices, which typically re-
peat periodically or quasiperiodically in time. A charac-
teristic feature of these densities is a superimposed noise,
whose amplitude decreases with the system size, originat-
ing from the local chaos in the lattice. This noise was
found to be indistinguishable from stochastic noise and to
show scaling behavior with the lattice size [2,3(a)].

Binder and Privman determined the evolution of two
1D lattices of logistic maps of small sizes. By defining a
density m(t) for the maps as the average of site values,
they compare the shapes of plots of m(t+ I)—2m(t)
+m(t —1) against m(t) —M and m(t+1) against m(t)
with corresponding ones for the 5D R g 9 automata.
Based on the degree of shape similarity between such
plots they imply the dynamics of the high-dimensional
automata is ruled by the same second-order dynamics
that they find to rule the coupled map lattice. However,
the non sequitur of such an implication may be seen from
two essential differences: (i) Their 1D examples are sys-
tems with too few sites to allow any conclusion. In fact,
the behavior on which their conclusions are based is com-
mon in dynamical systems with few degrees of freedom.
Moreover, they only investigated a very narrow size-
dependent range of parameters. The behavior they report
disappears in the limit of infinite size [4]. (ii) The most
fundamental characteristic of the high-dimensional auto-
mata that both systems discussed by Binder and Privman
miss is the noisy structure. The noisy structure can be
clearly seen in their Fig. 1 (which reproduces results for
rule R5 9 discussed in Refs. [2] and [3]), while it is total
ly absent in Figs. 2 and 3, corresponding to their models.
Actually, for coupled map lattices, this can be quantified

by the largest Lyapunov exponent, which is clearly posi-
tive in the systems discussed in Ref. [2]. This shortcom-
ing is independent of the size of the system.

In our opinion, the only similarity between the simula-
tions performed by Binder and Privman and those dis-
cussed in Refs. [2] and [3] is the underlying quasiperiodi-
city in both the high-dimensional automata and the lat-
tice of coupled maps. Quasiperiodicity is a common be-
havior of dynamical systems approximated by second-
order diAerence or diAerential equations. One should not
conclude on the sole basis of similar quasiperiodic behav-
ior observed in diAerent dynamical systems that the un-

derlying mechanism responsible for them is the same.
Binder and Privman use the argument that since irra-
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tional frequencies can emerge from discrete-time dynam-
ics, their second-order dynamics makes previous droplet-
type arguments irrelevant as models of R59. However,
the appearance of irrational frequencies, the basic signa-
ture of quasiperiodicity, is by no means exclusively a
consequence of discrete-time dynamics. Binder and Priv-
man noticed that their discrete-time second-order dynam-
ics generates quasiperiodic plots. Since the systems in

Refs. [2,3] also display quasiperiodicity, they conclude a
discrete-time second-order dynamics "to explain phenom-
enologically" the complex phenomena discussed in Refs.
[2,3]. But discrete time is not needed: It is easily possi-
ble to generate plots similar to their Figs. 2 and 3 using,
say, A sin( octet)+Bsin( cuzt), ta~/ca2 irrational, which is
the solution of a continuous-time diAerential equation.
That the dynamics is second order can hardly be a sur-
prise since in its most fundamental manifestation quasi-
periodicity involves t~o incommensurate frequencies.

In summary, after observing that some 1D discrete-
time second-order dynamical models display quasiperiod-
ic behavior, Binder and Privman proceed to draw con-
clusions about the behavior of collective states observed
in the much more complex systems discussed in Refs. [2]
and [3]. In our opinion such conclusions are certainly
premature. Quasiperiodicity is a common behavior and
not an exclusivity of the discrete-time second-order equa-
tions discussed in Ref. [1]. In order to conclude some-
thing about the complex behavior of the complicated and
rich automata discussed in Refs. [2] and [3] and state
that the models in Ref. [1] make "previous droplet-type
arguments irrelevant, " one should come up with a model
dealing with at least some of the main characteristics of
the subject in question, namely, the local noise, its origin,
and its variation with system size.
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