
VOLUME 71, NUMBER 1 P H YSI CA L R EV l E% LETTERS

Lom-Frequency Floppy Modes in P-Cristobalite

5 JUL+ 1993

Ian P. Swainson* and Martin T. Dovet
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CBB 8EQ, United Kingdom

(Received 2 April 1993)

Inelastic neutron scattering and molecular dynamics simulations provide evidence for the exis-
tence of low-frequency Aoppy modes in the high-temperature phase of cristobalite, which are anal-
ogous to those found in network glasses. The behavior is similar to that observed in computer
simulations of orientationally disordered crystals.

PACS numbers: 61.43.Bn, 61.43.Fs, 63.20.Dj, 63.50.+x

The importance of low-frequency modes has long been
recognized in glasses. The description of these modes
originates from the idea of Phillips [1] of underconstrained
and oeerconstrained glasses, defined as the ratio of the
number of constraints, n„ to the number of degrees of
freedom, nd. Phillips [1] suggested that glass forma-
tion may be expected in the region around n, = nd.
Thorpe [2] described the effects expected in a random
network by varying the proportion n, :np, which may
be achieved by the alteration of the mean coordina-
tion, (r), present in the structure. In these random net-
work structures a phase transition exists with a criti-
cal (r, ) = 2.4 [3]. As (r) is increased beyond (r, ), the
number of constraints is increased, and rigidity perco-
lates through the network. For (r) ( (r,), the glass
is underconstrained and floppy, and a large number of
low-frequency modes (called "floppy modes" in this con-
text [2,4]) are found to exist. Even once rigidity has
percolated there will still be a finite number of locally

floppy regions, so the number of floppy modes is never
precisely zero. These arguments have been developed for
monatomic and simple binary glasses [4] the applica-
tion to more complex systems such as silicate glasses is
not straightforward, but there is evidence that in these
materials low-frequency floppy modes exist and give rise
to similar anomalous transport properties at low temper-
atures [5,6].

In this Letter we extend these ideas to crystalline ma-
terials. We consider the case of cristobalite, which is one
of the crystalline structures of silica having an infinite
three-dimensional network of corner-sharing Si04 tetra-
hedra, and is often used as an analogy to silicate glass [6].
The possible existence of low-frequency modes in a frame-
work silicate may be seen to arise by the description of
the network in terms of a model potential of the form [2]
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where a,~ and P,~A, are the bond-stretching and bond-
bending force constants, respectively, and the summa-
tions include only interactions between atoms in the same
tetrahedron. There are no terms that are dependent
on the relative orientations of two neighboring tetrahe-
dra. In this approximation the fIoppy modes are those in

which the tetrahedra can move without any distortion,
and these have zero frequency. These floppy modes are
called "rigid unit modes" (RUMs) in the crystalline con-
text [7—9]. In a silicate with all the corners of the tetrahe-
dra shared, there is a fine balance between nd and n,—in
a simple counting nd = n, = 6 per tetrahedron, which
implies that there are no floppy modes. However, sym-
metry allows some of the constraints to be degenerate
and hence no longer independent. This creates a small
difference between nd, and n„ thereby generating some
RUMs. It is possible to determine the number of RUMs
for any wave vector [10]: for the high-temperature phase
of quartz the RUMs are confined to lines of wave vectors
in reciprocal space (i.e. , there are of the order of Nt/s
RUMs, where N is the number of unit cells) [7], whereas
in the high-temperature phase of cristobalite there are
RUMs in whole planes of wave vectors (i.e. , there are of
the order of N2/s RUMs) [9]. The number of RUMs in
the low-temperature phases of both materials is signifi-
cantly reduced, owing to the fact that the loss of sym-
metry breaks the degeneracies of the constraints, so that
the ratio n, :np becomes closer to unity.

RUMs have special importance in silicates. For exam-
ple, they can act as the classical soft modes that give rise
to structural phase transitions, as in quartz [7,8]. As re-
viewed elsewhere [9], the extremely anisotropic nature of
RUMs gives rise to small Ginzburg intervals, and RUMs
are responsible for other properties such as negative (or
anomalously low) thermal expansion.

In this Letter we will present evidence from neutron
scattering, infrared experiments, and molecular dynam-
ics simulations that reveal the existence of these modes
in the high-temperature (P) phase. The key point is that
the low-frequency dynamics of the P phase are very simi-
lar to those found in network glasses, indicating that the
low-frequency properties of the network glasses are not
so much properties of the amorphous structure but of the
existence of the network.

Cristobalite undergoes a structural phase transition at
ca. 270 C, although this temperature is dependent on
the quality of the sample. The high-temperature P phase
has cubic symmetry, Fd3m, and the low-temperature n
phase is tetragonal, P4s2q2 [11]. The set of RUMs for
the P phase is given in Table I [9]. The condensation
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TABLE I. Rigid unit modes in P-cristobalite.

Wave vector

0, 0, 0(r)
0, (, 0 (A)
(, (, ( (A)
( ( o (~)

(, l, ((S)
0, 1, 0(X)

( ( (0)

Rigid unit mode

3p + 3p
2Q

'A3+ A2

E2
L4+ L2

S2
X4
O~

The superscripts denote the degeneracy of the modes, and
the subscripts refer to the modes' symmetries.

of the X4 RUM gives rise to both the translations and
the rotations of the tetrahedra required to generate the
a phase [9,11,12]. Almost all the RUMs found in the P
phase vanish in the o. phase, apart from the RUMs along
the lines (110) in the tetragonal setting [13].

Our molecular dynamics simulations have been per-
formed on both phases of cristobalite, using samples con-
taining 49 152 rigid ions in a constant-volume —constant-
energy ensemble [14]. The calculations were performed
on the Cambridge (U.K.) AMT Distributed Array Pro-
cessor [8,15], using the interatomic potential model of
Tsuneyuki et al. [16]. The size of the simulation cells
were chosen to correspond to approximately zero pres-
sure.

Our initial evidence for the existence of RUMs in P-
cristobalite comes from calculations of the phonon den-
sity of states, g(v), obtained as the power spectrum of
the mass-weighted velocity autocorrelation function. In
Fig. 1 we compare g(v) of both phases. The key dif-
ference between g(v) for the two phases is at low fre-
quencies. g(v) for the n phase varies roughly as v2, as
expected for the normal contribution from the acoustic
modes. On the other hand, g(v) for the P phase in the
low-frequency regime increases nearly linearly, showing
significant enhancement of the number of low-frequency
modes. This result is similar to measurements of g(v)
that have been made on the amorphous Se-Ge system [4].
The same behavior has also been found in calculations of
g(v) for translational motions in orientionally disordered
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(plastic) crystals [17], although this point has barely been
appreciated [18]. In cristobalite, therefore, this behavior
may reflect some orientational disorder of the tetrahedra
(which is consistent with the observation of characteris-
tic diffuse scattering in the powder diffraction patterns
of the P phase [11]).

We have confirmed the prediction of the enhancement
of the number of low-frequency modes in P-cristobalite
using inelastic neutron scattering from a powder sample
of cristobalite. The experiments were performed on the
time-focused crystal analyzer (TFXA) spectrometer at
the ISIS Spallation Neutron Source [19]. TFXA measures

S(iQi, v) for a parabolic trajectory in (iQ~
—v) space, using

a fixed analyzing energy. Although this trajectory does
not sample a true density of states, since the ~Qi averag-
ing is not complete, the sampling will be reasonable for
modes with frequencies only weakly dependent on wave
vector, such as RUMs [9]. Measurements of the inelastic
spectrum were performed at temperatures of 20'C and
320'C. The results for energies between 2 and 22 THz
are shown in Fig. 2(a), and for energies between 0 and
2.5 THz in Fig. 2(b). The high-frequency spectra are
similar, as expected, but the low-frequency spectra are
very different —there is a large increase in the number of
low-frequency modes in the data from the P phase.

Given the similarities we have noted between P-
cristobalite and plastic crystals, we now discuss the is-
sue of the orientational disorder in the P phase. The
"ideal" structure of the P phase has the oxygen atoms
lying exactly halfway between two silicon atoms. This
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FIG. 1. g(v) for o. phase (line) and P phase (points) calcu-
lated by molecular dynamics simulations.

FIG. 2. TFXA spectra for (a) wide range of energies (n
phase data are the lower curve) and (b) low-frequency regime.
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crystalline silicate cristobalite. These modes are not so
prominent in the low-temperature n phase because of the
loss of symmetry and subsequent increase in the number
of independent constraints. The low-frequency dynam-
ics of the P phase are very similar to the low-frequency
translational dynamics observed in molecular dynamics
simulations of orientationally disordered crystals only
now have we been able to conG. rm this behavior experi-
mentally.
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