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Ab Initio Calculations of the Exchange Coupling of Fe and Co Monolayers in Cu
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A Korringa-Kohn-Rostoker Green's function method for planar perturbations and a frozen potential
method are used to evaluate the interaction energies of Fe and Co rnonolayers in Cu separated by up to
23 spacer layers. For the [100] orientation a phase shift of tr is obtained between the Fe and Co oscilla-
tions and the three antiferromagnetic peaks observed experimentally are well described. For [110]an in-
teresting beat eAect is obtained leading to very different results for the Fe and Co layers.
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After the discovery of antiferromagnetic coupling of Fe
layers in Fe/Cr/Fe sandwiches [1] there has been a
steadily increasing interest in exchange coupling in lay-
ered magnetic systems. Typically an oscillatory depen-
dence of the coupling strength with the thickness of the
spacer layer has been observed in a large variety of sys-
tems [2]. From early on this physical phenomenon has
been related to RKKY interactions. Theoretical eA'orts

have relied mostly on model calculations based on the
tight binding method, as, e.g. , in [3], or on the jellium
model, as, e.g. , in [4]. Bruno and Chappert [5] have
given a detailed analysis of the asymptotic behavior of the
interactions for large distances, showing that the oscilla-
tions are directly related to the detailed geometry of the
Fermi surface of the spacer material and are of mul-
tiperiodical nature. While this approach successfully ex-
plains variations of the oscillations by changing the thick-
ness and orientation of the spacer layer, it also has its
limitations. First it is only valid asymptotically for large
interlayer distances and second all data concerning the
scattering at the magnetic layer enter as unknown param-
eters, making quantitative predictions impossible.

For these reasons there is a strong need for reliable ab
initio calculations. Such calculations are, however, very
difficult. In supercell calculations as in [6] the numerical
work increases with the third power of the number of lay-
ers. At the same time the number of k points, necessary
in the calculation, increases since the information about
the oscillations contracts for large distances to regions

around critical points on the Fermi surface. Moreover
there is the problem of subtracting huge total energy
values to obtain the resulting small interaction energies.
In two recent reviews [7,8] it was therefore concluded
that progress in total energy calculations is not to be ex-
pected in the near future.

In this paper we will show that accurate and efficient
ab initio calculations based on Green's function methods
can be performed for large systems. We perform calcula-
tions for Fe and Co monolayers with orientations [100]
and [110] sandwiched in fcc Cu and separated by up to
23 spacer layers. We get good agreement with the exper-
imentally observed antiferromagnetic peaks for the
Co/Cu and Fe/Cu systems. Moreover we can explain a
phase shift of x between these oscillations and can make
valuable predictions for additional peaks at shorter and
larger distances.

Our calculations are based on density functional theory
and a newly developed Korringa-Kohn-Rostoker (KKR)
Green's function method for planar defects [9]. Here the
magnetic layer and the neighboring host layers are con-
sidered perturbations in an otherwise unperturbed non-
magnetic host. Because of two-dimensional (2D) periodi-
city of the perturbation a 2D Fourier transform of the re-
sulting multiple scattering equations is performed. For
the structural Green's function GLL (q, E) of the per-
turbed system, depending parametrically on the 2D wave
vector q and the energy E, the following Dyson equation
has to be solved:

Gb (q, E) =GLL (q, E)+ P G,",-(q, E)~t,' (E)G,'-', (q, E).

Here i,i' are layer and L, L' angular momentum indices. The summation includes all layers i" and angular momenta L"
which are assumed as perturbed. GLL-(q, E) denotes the structural Green's function of the host, written in the appropri-
ate 2D representation. It is calculated from the corresponding 3D Green s function GLt (q+k&, E) by an integration
over the wave vector k~ normal to the 2D Brillouin zone (BZ):

fed
GLL (q, E) = dk~e ' ' '

GLL (q+k~, E) .
2z " —~~d

(2)

With the above formalism, self-consistent LDA calculations are performed for single magnetic monolayers of Fe and Co
sandwiched into bulk Cu on (100) and (110) planes. The potentials are assumed to be spherically symmetric in the
atomic spheres (ASA).

The resulting t matrix htL(E) for the magnetic monolayer forms, together with the host Green's function of Eq. (2),
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the input for the following calculation of the exchange
coupling of two magnetic monolayers separated by n

spacer layers. For this we employ the frozen potential
approximation [10] (this method is also referred to as the
"force theorem") and use the self-consistent potential of
the single monolayer for the two interacting monolayers,
with the proper choice of the spin up and spin down po-
tentials for the ferro- and antiferromagnetic config-

urations. The induced spin splittings of the host poten-
tials and the resulting At matrices of the Cu atoms are
neglected, being justified in view of the small exchange
enhancement of Cu. Because of the frozen potential ap-
proximation the total energy diAerence between the fer-
romagnetic (F) and antiferromagnetic (AF) config-
uration is in first order given by the difference of the sin-
gle particle energies

EF EAF ~ dE(E —p )fT(E) [AnF(E') —An AF (E)]

dE [(E—p)fT(E)] [ANF(E) —ANAF(E)] .
d

dE

(3a)

(3b)

Here AnF and AnAF are the changes of the density of states, p the chemical potential, and fT(E) the Fermi-Dirac distri-
bution. By partial integration the corresponding integrated densities of states ANFAF are introduced in Eq. (3b), since
these can be directly evaluated using modifications of Lloyd's formula [11]. The contribution ANF'AF(E) for the in-
teraction of two monolayers 1 and 2 coupled ferro- or antiferromagnetically is given by

ANF' AF
—Im g dqlndet(1 —G' Az G 'Az'),

BZ

where the determinant and the matrices refer to angular momentum space and where the h, ~'

Az.'(q, E) =[I —AL.'(E)G"(q,E)l 'Ar.'(E)

(4)

(5)

represent q-dependent t matrices for the magnetic monolayer i and spin direction o., which inc1ude all multiple scatter-
ing eAects within the monolayer.

By inserting the r matrices of the single monolayers and the host Green s function G' [Eq. (2)] into Eq. (4), the in-
teraction energy EF —EAF of Eq. (3b) can be evaluated. Since the final formula is rather lengthy we give here only the
leading term, obtained by a second order expansion in powers of the dimensionless quantity 6 h, i. According to our
results this term dominates the behavior.

ANF —ANAF = Im J dq Tr [G (Az+ —Az )G (Az+ ——Az —)]
BZ

(6)

here the trace Tr refers to summation over angular mo-
menta. Reading (6) from right to left the electrons
scatter first at the "exchange potentials" (Az ~ —Az )of-
monolayer 1, then propagate through the space layers to
monolayer 2, scatter at these exchange potentials, and
propagate back to monolayer 1.

As can be seen from (6) only matrix operations in an-
gular momentum space have to be evaluated so that the
numerical eAort is independent of the spacer thickness.
Therefore, as a benefit of the frozen potential approxima-
tion, calculations can be performed up to large distances,
which is not possible in supercell calculations. Moreover
the energy calculation is rather transparent, since the
problem of subtracting large total energy contributions
does not occur.

In order to evaluate the exchange interaction E q—EAp, the energy integration over all occupied states in
(3b) and the q integration over the 2D Brillouin zone in
(4) must be performed very accurately. For the energy
integration we exploit the analytical properties of the
Green's function and the Fermi-Dirac distribution and
evaluate the integral by contour integration in the com-
plex energy plane [9]. We calculate the residua at five
Matsubara frequencies z =p+ i(2n + 1)xkT explicitly.

! The remaining integral for energies far away from the
real axis can easily be evaluated by about 16 energy
points.

The q integration over the irreducible part of the 2D
Brillouin zone is evaluated by special point methods.
Especially for large distances a very high number of q
points [as well as k& points in Eq. (2)] is needed [4],
since all the relevant information about the interaction
contracts to regions close to critical points on the Fermi
surface [5]. For a temperature T=450 K, corresponding
to a distance 0.13 eV of the first Matsubara pole away
from the real axis, our results are fully converged up to
23 spacer distances, if we choose about 500 q points in
the irreducible part of the 20 Brillouin zone. Since the
Green s functions decrease exponentially with increasing
distance from the real axis, this high number of q points
is only necessary for the one or two Matsubara energies
closest to the real axis. A reduction of the temperature,
to, e.g. , 237 K, practically does not change the results,
provided a suSciently higher number of q points, e.g. ,
1000, is used. Angular momenta up to l=3 are included
in the calculation.

Figure 1 shows our results for the interlayer coupling
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FIG. 1. Exchange coupling energies EF —EAF of (100) Co
and Fe monolayers sandwiched in fcc Cu versus the number of
Cu spacer layers.

energies of two Co or Fe (100) monolayers sandwiched in

fcc Cu and separated by a varying number of Cu layers.
The existence of slowly decaying oscillations is evident
from the diagram, in qualitative agreement with the
RKKY picture. In the [100] direction the asymptotic ex-
pansion [5] predicts two oscillation periods arising from
two diA'erent calipers of the "dogbone" structure of the
Cu Fermi surface. We have therefore made a least
square fit of such a RKKY expression for the oscillations
to our ab initio data. The fit is of good quality and, in

agreement with [5], yields two periods of about 2.6 and
5.9 monolayers. It also shows that for these systems the
asymptotic expression is valid from about 8 spacer layers
on.

By comparing the calculated values for Fe and Co in

Fig. 1, we observe that the oscillations are quite similar
and essentially shifted in phase by about x. For instance,
at distances where the Fe layers couple ferromagnetically
(EF EAF (0), the Co—layers prefer antiferromagnetic
coupling (EF EAF ) 0) and vice—versa. A phase shift of
x between Fe and Co has been observed in the work of
Petroff et al. [12]. In contrast to this Johnson et al. [13]
find a considerably smaller shift in contradiction to our
results. At present the reason for the discrepancy is un-
clear.

If the experimentally observed peak positions for the
antiferromagnetic coupling are compared with our calcu-
lated values, an overall good agreement is found. For Co
layers in Cu peaks have been found for about 6, 11.5, and
17 monolayers [14], which can be identified with the
three large antiferromagnetic couplings calculated for 7,
12, and 17 monolayers as shown in Fig. 1. In addition we
calculate strong antiferromagnetic coupling for 2 and 3
monolayers, which experiments have problems resolving,
presumably due to pinhole eftects. Of course there are
also additional peaks at larger distances.

For Co layers Johnson et al. [13] report an additional
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antiferromagnetic peak at 15 monolayers, where we cal-
culate a moderate ferromagnetic coupling. However,
upon improvement of the sample quality this peak seems
to decrease [15], in qualitative agreement with our re-
sults.

Not as many experiments have been reported for fcc
Fe/Cu/Fe (100) layers. Peaks at around 8, 15, and 22
monolayers [16] have been found, being in qualitative
agreement with our results. For instance, due to surface
roughness the calculated twin peaks at 14 and 16 mono-
layers might merge into a single broad peak centered at
15 monolayers. Similar to the Co case, the first antiferro-
magnetic peak at 4-5 monolayers has apparently not
been resolved in the experiment.

Compared to (100) layers, (110) layers of Fe and Co
in Cu show a considerably more complicated interaction
behavior. The results for (110) layers of Co in Cu are
given by the full line in Fig. 2(a) and on a reduced scale
in Fig. 2(b) together with the results for (110) Fe layers

FIG. 2. (a) Exchange coupling energies for (110) Co mono-

layers sandwiched in fcc Cu (full line). In order to simulate
roughness the dotted line gives the average tL E(n + I /2) of
neighboring values (see text). (b) Exchange coupling energies
for (110) Fe monolayers (dashed) in comparison to (110) Co
layers (full line).
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(dashed line). The difference between the Co and Fe
curve is striking. Whereas the interaction of the Fe lay-
ers shows in addition to the fast oscillation a slow de-
crease as expected from RKKY arguments, the ampli-
tude of the Co layers does not increase at all. Neverthe-
less, this strange behavior can be understood from RKKY
theory. For the (110) layers the asymptotic behavior is

dominated by an oscillation with a period of 2. 11 mono-
layer distances as determined by the length of the dog-
bone of the Cu Fermi surface [5]. The fact that this
period is only slightly larger than 2 monolayer distances
has two important consequences. First it explains directly
the fast plus/minus changes between neighboring layers
as observed for both Fe and Co. Second it leads to a
long-range beating between the 2. 11 and a 2 monolayer
period of the ideal crystal resulting in a long-period en-
velope function, which enters in addition to the normal
1/R factor. The basic difference between the (110) Co
and Fe layers is that at about 5 monolayers the long
period beating envelope function has a node for Co and
an extremum for Fe. As a result the Fe oscillations show
a normal decrease whereas in the case of Co the increase
of the envelope function roughly cancels the 1/R de-
crease leading to a more or less constant amplitude. In
fact the situation is even more complicated since the Fer-
mi surface is extremely flat at the ends of the dogbone
leading to a nesting eAect and a slower decay, like, e.g. ,
1/R t or 1/R. Moreover several additional oscillations
with smaller amplitudes exist for this orientation [5].

The short oscillation obtained in our calculation has
not been detected in experiment. This is plausible since
the mostly unavoidable roughness of the interface acts as
a low pass filter for the oscillations, as is known from the
results of the Fe/Cr system. In order to model the low

pass filter properties of the roughness we have plotted in

Fig. 2(a) by the dotted line for the Co system the average
of neighboring layers

AE(n+ 2 ):= 2 [AE(n)+t5E(n+ I)].
By this procedure the rapid oscillations are washed away
and strong antiferromagnetic couplings are found at
around 5-6 and 13-18 monolayers, which compares
favorably with the experimentally observed peaks for
Co/Cu at spacer thicknesses of about 7 and 16 mono-
layers [17].

In the present paper we have only considered the in-
teraction of 2 monolayers. With slight modifications the
above method can be extended to calculate the interac-
tion of thin magnetic films containing more than 1 mono-
layer. Calculations for these systems are in progress. In
line with a recent discussion by Bruno [18] and the good
agreement with experiments obtained in this paper we do
not expect drastic changes of the present results.

In summary, we have presented ab initio calculations

for the magnetic exchange interactions of Fe and Co
monolayers in fcc Cu. The calculations are based on a
multiple scattering (KKR) Green's function method for
planar perturbations. The interaction energies are calcu-
lated by the frozen potential method. The required com-
puting time is essentially independent of the number of
interlayers and calculations for large distances can be
performed, thus bridging the gap between the asymptotic
R KKY theory and supercell calculations possible for
small distances. For the [100] orientation we obtain a
phase shift of x between the Fe and Co oscillations which
can explain all measured peaks and predict hitherto un-
resolved peaks at shorter distances. For the [110] orien-
tation we obtain a very fast oscillation and an interesting
beating eff'ect leading to an extremely diAerent behavior
for the Fe and Co layers.
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