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Quenching of the Nonlinear Susceptibility at a T =0 Spin Glass Transition
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LiHoo. ]67Yp.833F4 is a dilute dipolar-coupled Ising magnet with a spin glass transition which can be
crossed with temperature T (Ts =0.13 K) or with an effective transverse field I (I s = I K at T=O). The
nonlinear susceptibility contains a diverging component which dominates at T=98 mK, but disappears
by 25 mK. At the same time, the onset of spin glass behavior in the dissipative linear susceptibility be-
comes sharper. We conclude that, contrary to theoretical expectations, quantum transitions can be qual-
itatively diA'erent from thermally driven transitions in real spin glasses.

PACS numbers: 75.50.Lk, 05.30.—d, 75.40.CX

The zero-temperature metal-insulator transition in

disordered systems is the best known and most studied
quantum phase transition [I]. Although quantum fluc-
tuations undeniably drive the transition, the field has
been handicapped by the difficulty of readily identifying a
suitable order parameter. As an alternative, one can in-
vestigate the T=O physics of spin systems with quenched
randomness [2-4]. Magnetic phase transitions in the
classical limit have been investigated extensively, and, as
thermal Auctuations give way to quantum Auctuations,
one expects that the generalized magnetic susceptibility
will continue to reveal the critical behavior.

The Ising spin glass in a transverse field is a simple
and, as recently demonstrated [5], experimentally accessi-
ble example of a classical disordered magnetic system
which can be converted into its quantum analog. The
model Hamiltonian is

jv N0= —gJ;,~;~;—rg~,",

At finite temperatures, the same transition is associated
with a finite critical regime and a diverging nonlinear sus-
ceptibility, the hallmark of classical spin glass transitions
[8].

LiHop i67Yps33F4 is a site-diluted (nonmagnetic Y for
magnetic Ho) and isostructural derivative of the dipolar-
coupled Ising ferromagnet LiHoF4 (T, =1.53 K). A
magnetic field H& applied perpendicular to the easy mag-
netic axis, which is parallel to c in this tetragonal materi-
al, yields a splitting of the Ho + ground state doublet [9].
It is this splitting I, proportional in lowest order to H, ,
which plays the role of the transverse field in Eq. (1).
We plot in Fig. 1 the spin glass paramagnet phase bound-
ary in the 1"-Tplane, determined from the dynamical be-
havior of the linear susceptibility (filled circles) [5].
Note that thermal Auctuations with Tg =0.13 K are far
more eA'ective in destroying spin glass order than quan-
tum Auctuations, for which the critical strength is
I g (T =0) =0.98 K.

where the o.'s are Pauli spin matrices and the J;~.'s are
random longitudinal couplings. The commutator [H, tTJ'],

which vanishes for zero transverse field I, becomes
nonzero for I a0, making Heisenberg's equation, (h/i)
x t)tT'/t)t = [H, crt] germane Thus, . a finite I introduces
channels for quantum relaxation which bypass the activa-
tion barriers determining the classical spin glass dynam-
ics, and so depress the freezing temperature [5,6]. As
these quantum Auctuations are tuned by the transverse
field, a zero-temperature phase boundary arises between
the spin glass and paramagnetic ground states.

Following our experience with thermally driven mag-
netic transitions, it is natural to ask about the critical be-
havior at the quantum spin glass transition, and to com-
pare results in the zero-temperature and classical limits.
In the present paper, we describe the first experiment to
address this question. The key result is that the T=O
transverse field-induced transition in the dipolar-coupled
spin glass [7] LiHopt67Yps33F4 as characterized by the
linear and nonlinear susceptibilities, appears first order
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FIG. 1. Phase diagram of the diluted dipolar-coupled Ising
spin glass LiHop i67Yp, s33F4 in the transverse field (I )—tem-
perature (T) plane. SG: spin glass; PM: paramagnet. Filled
circles follow from dynamical measurements, open circles from
the nonlinear susceptibility, and squares indicate where
Zi'(f =1.5 Hz) begins to rise (see Fig. 3). The dotted line is the
mean-field phase boundary associated with an ordered magnet
whose critical temperature and field are the same as Ttt(I" =0)
and I s(T =0), respectively.
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gt, t(T,H„f) =g) —3g3h +5gsh (2)

In Eq. (2), g is the linear susceptibility, while g3 is the
lowest order nonlinear susceptibility. For our sample, fits
of Eq. (2) to data such as those plotted in Fig. 2(a) show
that g~, g3, and gs are of order 100 emu/molHo, 10
emu/molOe, and 10 emu/molOe, respectively, re-
quiring longitudinal fields of up to 100 Oe to discern g3
accurately. As expected given the large g-factor anisotro-
py of this dipolar-coupled Ising magnet, the data also

We suspended single crystals of LiHo0167Yog33F4 of
typical dimensions 1.6 x 1.6 x 5 mm from the mixing
chamber of a helium dilution refrigerator inside the bore
of a superconducting magnet with field direction perpen-
dicular to the Ising (long) axis of the crystals. A trim
coil, oriented parallel to the Ising axis, provided a con-
trollable longitudinal field h varying less than 0.1% over
the sample region, and compensated for sample misalign-
ment (less than 0.3' for each of three runs). We mea-
sured the total susceptibility, @tet(T,H„f), using a digital
lock-in technique [10] and a standard low-temperature
gradiometer configuration.

We show in Fig. 2(a) the real part of @tet as a function
of h at T =98 mK and f=1.5 Hz for a series of trans-
verse fields. Clearly, parabolas with small quartic correc-
tions give an excellent account of the data, implying that,
in practice,

show that terms containing odd powers of h and H„
which one might consider adding to Eq. (2), are negligi-
ble. Indeed, the lowest order term of this type, propor-
tional to H&h, would manifest itself as an off'set in the gt, t

vs h curves in Fig. 2(a). Throughout our experiment, the
only oAsets observed were consistent with the less than
0.3 misalignments of the crystal and transverse field
magnet axes. Finally, the imaginary part of gt, t varies
negligibly with h, implying that ~g3'~ (5&&10 emu/
mol Oe for the fields, temperatures, and frequencies
probed in this experiment. As one approaches the spin
glass transition from above (H,'=5.74 kOe), the parabol-
ic curvature increases rapidly, indicating a sharp augmen-
tation of the nonlinear contribution. Moreover, at H,
=5.75 kOe a clear signature of a higher order contribu-
tion to the susceptibility appears in the nonparabolic na-
ture of the data at highest h. Although g5 is generally
much smaller than g3, it is expected to diverge more
strongly at the transition [8,11]. Varying gs in our fit to
gt, t does not change the gi and g3 values from those found
when g5 was fixed at zero.

The lower frame of Fig. 2 illustrates the frequency
dependence of g3 at this T. There is a strong rolloA for
f& 10 Hz which reflects the characteristic correlation
time of the system [11]. Below f=2 Hz, however, g3 is
essentially constant for all H& ~ H, . At lower T and cor-
respondingly larger critical H&, the roll-oA frequency in-
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FIG. 2. (a) The total magnetic susceptibility [Eq. (2)] vs
longitudinal field h for a series of transverse magnetic fields H&

at T=98 mK. The sharply increased parabolic curvature ap-
proaching the spin glass transition at H& =5.74 kOe corresponds
to the divergence of g3. At H& =5.75 kOe, the dotted line in-
cludes a g5 component in the fit. (b) The frequency dependence
of the nonlinear component. All fixed frequency data are taken
at f=1.5 Hz, where g3 has saturated.
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FIG. 3. (a) The nonlinear susceptibility as a function of
transverse magnetic field at four temperatures. The clear diver-
gence of g3 at the spin glass transition in the high T, small Ht
(small F) classical limit becomes merely a small flat maximum
in the low T, large H, (large I ) quantum limit. (b) Corre-
sponding behavior of the imaginary part of the linear suscepti-
bility. Here, there is a clear signature of the spin glass transi-
tion in both the classical and quantum regimes.
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creases, exceeding 10 Hz at T=25 mK and H, =ll
kOe. Hence, data taken at 1.5 Hz maximize the induc-
tive response while still being in the frequency-indepen-
dent regime for all temperatures and transverse fields
probed.

The primary result of our study is captured in Fig. 3.
The divergence of the nonlinear susceptibility is seen as
expected in the classical limit, but becomes suppressed
and eA'ectively disappears as T 0. By T=25 mK, g3
only shows a Hat maximum. Furthermore, at this T and
unlike what we find at 98 mK, we do not observe any de-
viation from a parabolic dependence on h up to 260 Oe
for any H„precluding a diverging higher order suscepti-
bility. The (unscaled) overlap of the g3(H&) data above
12 kOe defines the regime where the splitting I of the Is-
ing doublet dominates any thermal or spin-spin interac-
tion energy.

The quenching of the divergence of the nonlinear sus-
ceptibility in the quantum limit raises the question of
whether a well-defined spin glass transition still occurs.
We show in Fig. 3(b) simultaneous measurements of the
imaginary part of the linear susceptibility in the zero fre-
quency limit. There is a clear dynamical signature of the
transition at all temperatures, even sharpening at low T
and high H, . With increasing HI, gi' decreases sharply
from its low H& plateau at a critical field indistinguish-
able from that determined by the g3 measurement. Thus,

g3 at H, =5.74 kOe is indeed most singular at the glass
transition defined by the spin dynamics. As described
elsewhere [5], the sudden increase in the dissipation is

due to the development of a flat, frequency-independent
tail in gi'(f 0), which, by the fluctuation-dissipation
theorem, corresponds to characteristic I/f noise in the
spin glass magnetization [12].

We can fit the divergence of the nonlinear susceptibili-
ty at T=98 mK to the critical form, g3 —[(r—r, )/
I g] "'. As seen in Fig. 4, this form fits well over the
range 10 to 1 in the reduced variable, coinciding with
the interval over which gi' changes from zero to its pla-
teau value [Fig. 3 (b)]. We find best fit values I s
=0.253(8) K and y,&i=0.20(2). By comparison, Monte
Carlo simulations [13] of the classical short-range Ising
spin glass find critical exponents y=2.9(1), while experi-
ments on both metallic Ag:Mn and insulating Eu04Sr06S
spin glasses [11] yield diverging nonlinear susceptibilities
with y =2.3 (2).

The values for I g(T) determined from g3 are plotted
as open circles in the phase diagram of Fig. 1, along with
the squares which mark the onset of dissipation. The
open circles fall on the phase boundary defined by the ap-
pearance of frequency-independent behavior at small f in

gi (f). While this phase boundary is simply a straight
line, the crossover line delineated by the squares displays
considerable curvature. It can be described using the
mean-field formula for the phase boundary of an ordered
magnet in a transverse field [14], coth(I/akT, ) =J/I,
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FIG. 4. Critical behavior of the nonlinear susceptibility in

both reduced transverse field and reduced temperature (inset),
described by the same effective critical exponent (slope). Axes
scale by the ratio of the relative strengths of the quantum and
thermal fluctuations (see text).

where J is a measure of the interaction between spins and
a is a dimensionless constant associated with the eA'ective
ratio of ground and excited state degeneracies. This ratio
rises above the single ion value of two with the complexi-
ty of the fundamental units, e.g. , clusters of strongly cou-
pled spins [7], undergoing the mean-field transition. The
parameter values yielding the best account (dotted line in

Fig. 1) of the data are a =7.9(4) and J=1.00(6) K. The
calculated T, (I =0) =J/a =0.13 K = Tg(I =0), thus
making the measured (T (0.098 K) crossover points for
LiHoo i67Y0833F4 lie on the mean-field transition line as-
sociated with an ordered magnet whose critical tempera-
ture and field are the same as Tg(1 =0) and 1~(T=0),
respectively. That J=I g(T =0) is much closer to T, (x
=1) than it is to Tg or even the mean-field ferromagnetic
T, (x =0.167) =xT, (x =1)=0.26 K, underlines the great
importance of rare spin configurations involving strong
J;z's in the quantum regime.

The linear spin glass phase boundary of Fig. 1 man-
dates the same eA'ective exponent whether approaching
the transition in I or T. We verify this accord in the in-
set to Fig. 4, where the decade spacing is the same as in

the main part of the figure. g3 diverges with (T —Tg)/Ts
at I =255 mK, giving a best fit eAective critical exponent
y,ti=0.24(6). The data sets, in fact, can be shifted hor-
izontally on top of each other by simply multiplying the
abscissa of the inset by 7.5, the ratio of I s(T=O)/Tg(I
=0) =(0.98 K)/(0. 13 K), the quantum and classical end
points of the spin glass phase diagram (Fig. 1).

This correspondence allows us to rule out single ion
efIects as a determining factor in the divergent properties
of g3. Although g3 can vary rapidly with I as 1/I at
fixed T, it does not increase appreciably with decreasing
T at fixed I because of the singlet nature of the
transverse-field split ground state. Calculations in the
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full 17x 17 eigenfunction space of the Ho + ion do
indeed confirm that the single ion nonlinear susceptibility
is effectively independent of T over the reduced tempera-
ture range of the inset to Fig. 4.

Mean-field treatments of both infinite-range quantum
Ising [15] and quantum rotor [16] spin glasses predict
unusual behavior for the nonlinear susceptibility at the
T=O transition, but retain its divergence. Specifically,
they give y, a =

2 and a phase boundary I s(T)—I g(T=0) —T at low T. Our experiment yields ydr
at all T measured, with an essentially linear phase

boundary. If we attempt to fit the weak divergence of
g3 with transverse field by a critical form for the lower
temperatures, then we are faced with the physically
unreasonable situation of a progressively decreasing,
temperature-dependent critical exponent, y;g, indistin-
guishable from zero by T=25 mK. Hence, in the T=O
limit, the classical view that the nonlinear susceptibility
diverges at a spin glass transition does not seem to apply.
Yet, the dynamical evidence clearly points to an extant
transition with an appreciable crossover region.

One response to our experiments is that the phenomena
we find is somehow related to the suppression of g3 in

classical Heisenberg spin glasses on application of modest
external fields [11]. This is highly improbable given (1)
the care we have taken to trim and align the transverse
field perpendicular to the measuring field and the Ising
axis of the crystal, (2) the fact that for a corresponding
field-induced reduction in p3 Tg is reduced very substan-
tially for LiHop i67Yp833F4 but not for the classical sys-
tems, and (3) the underlying Hamiltonians and measure-
ments are fundamentally diff'erent. In particular, an
eAective Ising (not Heisenberg) Hamiltonian, Eq. (1),
describes LiHop i67Yp833F4, and in contrast to the studies
of Ref. [11],our experiment features a measuring field lt

oriented perpendicular to the applied field H, .
Even though it is di%cult to relate our results to previ-

ous experiments on spin glasses, a number of possible ex-
planations exist. The nonlinear susceptibility may no
longer couple to the order parameter in the quantum case
[17],a radical suggestion given its observed divergence in

the classical limit and the dramatic step in gI'(f) at I ~
for low T. More likely, the T=O quantum spin glass
transition is first order. While the nonergodicity of the
spin glass state precludes the standard test of hysteresis
at a first order transition, this hypothesis is consistent
with both the abrupt onset of linear dissipation and the
absence of a pretransitional divergence of g3 (and the
spin glass correlation length). Moreover, in quantum sys-
tems of finite size, first order transitions in the form of
level crossings are the rule rather than the exception. It
is plausible, especially given the large critical transverse
field at T=O in LiHop i67Yp833F4 that level crossings as-
sociated with strong but relatively rare bonds dominate
the physics, as occurs in random transverse-field Ising
chains [4].

In summary, we tune a physical realization of the Ising
spin glass in a transverse field [Eq. (1)] from the I =0
classical to the T=O quantum limit. Both regimes are
accessible for kOe magnetic fields and mK temperatures
in our system of randomly distributed dipoles because of
suitable g-factor anisotropies and crystal field splittings.
We find a clear dynamical signature of the spin glass to
paramagnet transition whether dominated by thermal or
quantum Auctuations. However, in contrast to the obvi-
ous second order nature of the classical transition, the
quantum counterpart appears first order.
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