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New O(3) Transition in Three Dimensions
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A three-dimensional lattice of Heisenberg spins with nearest-neighbor interactions is studied by nu-
merical simulation under the constraint that no free topological singularities (hedgehogs) are allowed.
Only nearest-neighbor pairs of oppositely charged hedgehogs are permitted in the sum over con-
figurations. A disordering transition with exponents diA'erent from the usual Heisenberg transition is
found and tentatively identified as a pure spin wave disordering transition.

PACS numbers: 75. jO.Jm

The relationship between topological eAects and phase
transitions has been a fruitful area of research ever since
the seminal work of Kosterlitz and Thouless [1]. The un-

binding of pairs of vortices in the two-dimensional XY
model drives the transition between a power-law correlat-
ed phase and an exponentially correlated disordered
phase. This transition would not be possible without the
vortices. Topological objects have been studied in three
dimensions as well, examples being the vortex loops of the
XY model [2] and tunneling events in two-dimensional
quantum antiferromagnets [3]. In analogy with the two-
dimensional XY model, one can ask what role the
hedgehogs [4] of the O(3) Heisenberg model play in the
three-dimensional disordering transition. This question
has been studied, but not fully answered, due primarily to
the fact that there seems to be no simple decoupling be-
tween the "spin waves" and the hedgehogs in the three-
dimensional O(3) model [5], as there is in the two-
dimensional XY model. Analytical work based on extrap-
olations from two dimensions [6] suggest that hedgehogs
should be important in the O(3) transition.

The present paper is inspired by the work of Lau and
Dasgupta (LD) [7], who studied the Heisenberg model
with a variable suppression of hedgehogs numerically.
They considered the partition function

Zt =g exp —PJ Z S' SJ —
&h 2 I gt I

&ij) I

where S; are O(3) spins on a cubic lattice with sites la-
beled by i, P is the inverse temperature, J is the nearest-
neighbor Heisenberg coupling, I stands for a dual lattice
site, and Qt is the topological charge at that dual site.
The term multiplied by kp suppresses hedgehogs for
kp & 0. The Heisenberg model is reproduced for Xp, =0.
LD found that if kp is sufficiently large, there is a
nonzero magnetization even at infinite temperature.
They also found oppositely charged hedgehogs with arbi-
trary separation as the transition is approached. This re-
sult suggests that the analogy with the two-dimensional
XY model holds and that the unbinding of pairs of oppo-
sitely charged hedgehogs drives the O(3) Heisenberg

transition in three dimensions.
In order to study whether the unbinding of pairs is

necessary to disorder the magnet we allow nearest-
neighbor pairs (or close pairs) to exist (with variable
chemical potential 2k~), but no free hedgehogs. We con-
sider the partition function

Zt =g exp —PJ'S;.S&
—2kt, Z Iptjl

«j) (IJ&
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where the prime on the sum indicates the absence of free
hedgehogs and DIJ corresponds to a topological dipole
with charges at the nearest-neighbor dual lattice sites I
and J. We use a geometric definition of the hedgehog
number inside a cube [7,8]. To carry out the numerical
approximation to the partition sum we use a Metropolis
algorithm [9] in which a randomly chosen spin is updated
every time step in conjunction with the histogram method
[10]. After the update the configuration of hedgehogs is
recomputed. If the new configuration also has only close
pairs, it is accepted with a probability specified by the
Hamiltonian of Eq. (2). To calibrate our results we first
performed simulations for the model of LD, the Hamil-
tonian of Eq. (1).

Let us summarize our results: Figure 1 shows the
phase diagram for the LD model based on our simula-
tions (upper dashed line). We performed simulations
only on the axes. We find the critical chemical potential
at infinite temperature to be XI, =2.7. Using the histo-
gram method we are able to obtain good estimates for the
critical exponents via a standard finite-size scaling
analysis [11]. We find that the exponents of the infinite
temperature fugacity transition are indistinguishable
from Heisenberg exponents (vH =0.66 ~ 0.05, PH =0.33
~0.05). This is a new result, although hardly unexpect-
ed. Figure 2 shows the data collapse for lattice sizes 6, 8,
10, and 12.

The phase diagram for the model with close pairs only
is also plotted in Fig. 1 (lower dashed line), where the
critical k~ =0.6 at infinite temperature. For Xz =0 the
model disorders at about T, (pair) =3, higher than the
Heisenberg transition temperature of about T, (Heis)
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FIG. 1. The phase diagrams of the Lau-Dasgupta model

(upper dashed line) and the model with close pairs only (lower
dashed line). Simulations were carried out only along the axes.
The ordered and disordered phases are marked for both models.

FIG. 3. A typical data collapse for the model with close pairs
only where the notation is as before. The estimates for the ex-
ponents are very different from the Heisenberg exponents.

=1.5. This result demonstrates that free hedgehogs are
not necessary for disordering the magnet. Figure 3 shows

a typical data collapse for this inodel (at k~ =0), which
seems to be of slightly poorer quality than the data col-
lapse for the LD model. The surprise is in the values of
the critical exponents, which we estimate to be v=1.05
~ 0.05 and P =0.75 ~ 0.05. These are diff'erent by much
more than numerical error from the Heisenberg ex-
ponents. Numerical error was estimated by comparing
the results of diff'erent runs, and also by visually inspect-
ing the finite size scaling for difI'erent assumed values of
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the exponents. The infinite temperature transition in this
model also belongs to the new universality class.

Before we can identify the new critical point as a new

universality class with O(3) symmetry, we have to deal
with some subtleties. Consider once again the updating
process, which is potentially nonlocal, as demonstrated by
Fig. 4, which shows two configurations of pairs. Figure
4(a) shows a long chain of pairs, where the two opposite-
ly charged hedgehogs in the center (circled) cannot an-
nihilate, since that would leave two free charges. Howev-
er, in Fig. 4(b) they can, since the remaining hedgehogs
can now be repaired with no free charges. Thus, the al-
lowed phase space of a spin may depend (in certain
configurations) upon the state of a spin far away. To
avoid this nonlocality, which would make the time re-
quired for each update prohibitive, we keep track of
the pairs as they form. If an update annihilates two
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FIG. 2. A typical Anite size scaling data collapse for the

Lau-Dasgupta model for lattices of 6, 8, 10, and 12 sites.
Here t (T—T, )/T, and kf is the average magnetization. The
estimates of the exponents based on the best data collapse are
within numerical error of the Heisenberg exponents.
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FIG. 4. Two possible configurations of close pairs. In (a) the

oppositely charged hedgehogs cannot annihilate since that
would leave two unpaired hedgehogs. In (b) they can since the
remaining hedgehogs can be repaired leaving only close pairs.
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FIG. 5. A plot of (log(Nre»|r))/lV versus Xr at T=~, where
N«», , is the average number of distinct repairings of close pairs
and N is the number of sites in the lattice for 8 and 12 lat-
tices. The vertical line marks the transition. The number of
repairings is small and smoothly varying, indicating that loops
do not proliferate near the transition.

FIG. 6. A plot of log[M(T, )] vs log(L) for the pair transi-
tion. The points represent L 6,8, 10,12,14. The slope is con-
sistent with the P and v found previously and shows no tendency
to change.

hedgehogs belonging to diff'erent pairs, we look for a local
repairing (within 2 lattice units). If no such local repair-
ing is found, the update is not accepted. However, it is
easy to see that all permissible spin configurations are
reached by this procedure. The price we pay for making
the Hamiltonian local is that we now have an extra de-
gree of freedom on the faces of the cubes, and perhaps a
longer equilibration time.

It is important to address whether the above nonlocali-
ty plays any role in the transition we have discovered.
The extra variable introduced above to mark the close
pairs can be coarse grained to a variable length vector
(say v). Integrating out this vector would leave a model
with only O(3) spin variables, but with nonlocal interac-
tions which depend on the correlations of v. As long as
there is no second order transition in the v variables, their
correlations will be exponential, and the O(3) model can
be considered effectively local [12].

It is very difficult to study correlations in finite size sys-
tems. Instead we look at loops of close pairs, which are
essential for any nonlocality. If this nonlocality drives the
transition, we expect the loops to proliferate near the
transition. Each disjoint loop of close pairs can be paired
in two distinct ways. We compute the number of distinct
ways of pairing the close pairs and take the logarithm to
estimate the importance of loops. Specifically, let us con-
sider the infinite temperature limit, in which the demag-
netization transition occurs as X~ is reduced. We com-
pute the average of the logarithm of number of indepen-
dent pairings [(log(N«p„r))/N, where N is the number of
lattice sites] and its variance in the system numerically.
As shown in Fig. 5, in the critical region the number of
pairings is small and smoothly varying. We have also

considered the quantity

( (log N repair )
Ri loop

((logNrepair) &

(3)

If the loops proliferate in a phase transition, we expect a
crossing of the Ri curves for different lattice sizes [11].
There is no such crossing in the critical region. Faced
with this absence of evidence linking loops of pairs to the
demagnetization transition, we tentatively conclude that
the nonlocality induced by loops of pairs has nothing to
do with the transition. Furthermore, alerted by a previ-
ous example of the relevance of the percolation of topo-
logical objects [13],we have computed the probability of
finding a percolating cluster of close pairs. In the critical
region the density of close pairs is too small to percolate
(at criticality only 12% of the sites are occupied by
hedgehogs). Also, the peak of dP/dX~, which reliably
marks the percolation threshold [14], occurs far from the
demagnetization transition. For the finite temperature
transition at X&=0 the pairs percolate very close to
the demagnetization transition. However, since the ex-
ponents are the same at all temperatures, the infinite tem-
perature results show that percolation cannot have any-
thing to do with the demagnetization transition. Thus,
the pairs are well behaved in the critical region of the
demagnetization transition. Loops of pairs do not proli-
ferate and pairs do not percolate.

It is also important to check for any evidence of a
crossover. Figure 6 shows a plot of log[M(T, )l versus
log(L). From standard finite size scaling, the slope of the
line should be P/v. We find a slope consistent with the P
and v found previously. Also, there is no tendency for the
slope to change for higher L, which we interpret as ab-
sence of evidence for a crossover. We emphasize that
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there could be a crossover at much larger I., but we see
no evidence of it.

These results have led us to tentatively espouse the fol-
lowing position: Since the introduction of a small amount
of hedgehog suppression into the Heisenberg model mere-
ly shifts the critical temperature and does not alter the
exponents, the hedgehog suppression term is an irrelevant
operator (as one can conclude immediately from the di-
mension of the perturbation in the continuum). As one
coarse grains the system, it renormalizes the spin stiffness
and disappears. However, the Heisenberg fixed point has
a finite basin of attraction for the irrelevant operator, and
beyond a certain XI, one leaves this basin of attraction and
the transition disappears. The pair transition we have
discovered belongs to a diA'erent universality class (as-
suming no crossover at large L). Since there are no free
hedgehogs in the pair model, and the pairs do not proli-
ferate, we can speculate that the disordering is caused en-
tirely by spin waves. It is believed that the 2+|. expan-
sion [IS-17] does not include the eA'ects of hedgehogs,
and should therefore produce the exponents of a pure spin
wave disordering transition. However, there are recent
fundamental objections [18] to the validity of the 2+e
expansion which may make its results moot. If the above
identification is correct, spin waves disorder the magnet
in a second order phase transition belonging to a hitherto
unknown universality class, but the introduction of free
hedgehogs drives the system into the Heisenberg univer-
sality class. This is in agreement with earlier generic
considerations about the effects of free hedgehogs in an
already disordered magnet [19]. The situation is in stark
contrast to the two-dimensional XV model, where the spin
waves alone cannot disorder the magnet. We emphasize
that our numerical results do not prove this identification
but merely suggest it.

Numerical simulations of a model in which pairs of
larger size are allowed, but free hedgehogs are still absent
would serve as a good test of the hypothesis made above.
If this model disorders with different exponents than the
pair model of this paper the hypothesis will have been
considerably weakened. We have been unable to do this
because the time for each Monte Carlo update increases
enormously if one allows larger pairs. The other interest-
ing question is the stability of this new transition with
respect to the introduction of free hedgehogs. Unfor-
tunately, the crossover effects in finite systems would
make this effect very di%cult to see numerically.

In summary, we have numerically investigated a model
of O(3) spins on a lattice where only close hedgehog-
antihedgehog pairs are allowed. We find a disordering
transition with new exponents, belonging to a hitherto un-
known three-dimensional O(3) universality class (assum-
ing no crossover at large L), which we tentatively identify

as the class corresponding to pure spin wave disordering.
The results also suggest that nontrivial topology in the
form of free hedgehogs, though not necessary to disorder
the magnet, is an essential feature of the Heisenberg
transition. Many open questions remain, including re-
sults on the stability of the dipole transition to free
hedgehogs and a verification of the physical basis of dis-
ordering.
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