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Localized States in a d-Wave Superconductor
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Impurity scatterers, particularly in the unitary limit, produce low energy quasiparticles in a two-
dimensional d-wave superconductor. We argue that even if the impurity concentration is small so that
the wave functions in the normal state are essentially extended, the quasiparticles in the superconducting
state become strongly localized for a short coherence length d-wave superconductor. An effective mobil-
ity gap then leads to thermally activated behavior for the microwave conductivity and possibly for the
London penetration depth. We argue that this observation allows some puzzling data on oxide supercon-
ductors to be reconciled with the hypothesis of d-wave pairing.

PACS numbers: 74.20.Mn, 71.55.Jv, 74.25.Ha

A number of recent experiments on the oxide supercon-
ductors give strong indications that the pairings state may
be of d,2_,2 symmetry. For example, strong anisotropy
is observed in the energy gap in the angular resolved pho-
toemission [1]. Low lying spin excitations remain below
T, in the (x,7) direction [2]. The unusual dependence of
NMR relaxation rate on magnetic field direction is best
explained by d pairing [3,4]. In contrast, the temperature
dependence of the London penetration depth A(7T) was
claimed to be thermally activated and consistent with
conventional BCS theory [5]. More recently, a T2 de-
pendence was found to be consistent with experiments in
YBCO (Y-Ba-Cu-O) thin films [6], and a linear T
dependence was reported for single crystals [7]. Never-
theless, at least in some samples, for 7 <0.27, A is
definitely flatter than a T2 fit would permit [8]. The
problem is further complicated by a report of excellent
agreement with BCS theory down to low temperatures in
an electron doped material [9]. Theoretically, the d wave
is often the preferred state for nonphonon mechanisms
based on strong correlations [10-12] or exchange of spin
fluctuations [13].

According to conventional wisdom, a single experiment
showing activated behavior is sufficient to invalidate the
d-wave hypothesis, whereas power law behavior can often
be explained away as BCS with some extrinsic broaden-
ing. Thus, it is important to examine the effect of extrin-
sic effects such as disorder scattering on the d-wave state.
We find that due to special features of two dimensions,
conventional wisdom fails and activated behavior can be
consistent with d pairing. We shall present our results in
terms of a d,2_ 2 state where Ax=Ao(coskya —cosk,a),
even though our conclusions are general for any state
where Ag vanishes linearly along a direction parallel to
the Fermi surface.

We consider two models of disorder. In model I we as-
sume a & correlated random potential U(r) such that
(U(r)U(0))=us(r). In the normal state, the Born ap-
proximation leads to an isotropic scattering rate 7!
=27rpou§, where pg is the density of states. In model II
we assume a dilute density n; of strong scatterers, each
with phase shift §o. For simplicity, we will specialize to
the unitary limit 8o ==/2, in which case the normal state
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scattering rate is 7 “l=I=pn,;/npo. Note that in contrast
to the Born approximation = ~! is inversely proportional
to po. In both models we assume that gr7 >> 1, so that the
normal state is a good metal. We first summarize our
main findings and motivate them by simple physical argu-
ments before providing the technical details.

It is known that in the d-wave state, disorder gives rise
to a finite density of states at zero energy [14,15]. It then
makes sense to ask what is the conductivity o(w— 0) due
to low lying quasiparticles. Our surprising finding is that
o= (e?/2nh)&o/a, where Ey=vr/mA¢ is the coherence
length; i.e., o is independent of the scattering rate t. To
understand this by a simple argument, we recall that

= vfYiG+(k)G - (k), where G+ =(& +i/27) ™! for
normal metals. Usually we replace Xx by pofdé, and by
power counting o is proportional to 7, the Boltzmann re-
sult. For the d-wave superconductor, the density of states
is linear in energy, so that crudely we expect X — [d&¢.
The extra factor of £ changes the power counting so that
o is now independent of r. A more careful calculation
presented below shows that the result holds for both mod-
els of disorder. We note that the independence of o on 7
was anticipated by Fradkin in his study of 2D zero gap
semiconductors [16].

We next appeal to the scaling theory of localization,
which states that all states are localized in 2D with a lo-
calization length &; =/e®, where / is the mean free path
and g=o/(e?/2nh) is the dimensionless conductance
[17]. This result follows from the appearance of a loga-
rithmic correction to the conductivity in the case of time
reversal symmetric systems by summing maximally
crossed diagrams. We have checked that a similar loga-
rithmic correction with a coefficient of order e?/h arises
in the present problem. Furthermore, Fisher and Fradkin
[18] have shown that a model with a similar excitation
spectrum (a tight binding model with 7 magnetic flux per
plaquette) maps onto the orthogonal nonlinear ¢ model
which describes the standard localization problem. Thus
we can conclude with confidence that the low lying quasi-
particle states are localized. Of course, the localized
states have observable consequences only if g is not too
large. For example, in the normal state g = gr7 > 1 and
the wave functions are essentially extended. In the d-
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wave superconductors, g = £/a which is of order unity
for the oxide superconductors. We can therefore expect
localization to play an important role. It is worth re-
marking that for g of order unity the scaling to the strong
coupling localization fixed point will be stable to small
perturbation such as interlayer coupling, so that our con-
clusions are applicable to weakly coupled layers as well.

While o(w— 0) is independent of disorder, the
amount of disorder controls the energy scale over which
this estimate applies. We denote this energy scale by y
and yg for models I and II, respectively. The mean free
path which sets the scale of &; is given by / =vg/y and
vr/yo. We find that for Born scattering (model 1), y is
exponentially small in 7, so that the localization effect is
negligible. On the other hand, for model II, yp is given
by Eq. (8) and is enhanced compared with = ~!. The ori-
gin of this difference is that for d-wave superconductors
the density of states in the gap is strongly energy depen-
dent so that the effective scattering rate due to static dis-
order is modified compared with the normal state value.
As remarked earlier, the scattering rate has the opposite
dependence on the density of states in models I and II.
This accounts for the very different behavior of the two
models.

We therefore reach the conclusion that for short coher-
ence length d-wave superconductors with a dilute concen-
tration of strong scatterers, the low energy quasiparticles
with E < yo are strongly localized. What are the experi-
mental consequences? To answer this, we introduce yet
another energy scale Aw [given in Eq. (10)], which is the
typical energy level spacing between states within a local-
ization length of each other. For T < Aw, the localized
states begin to decouple and the conductivity becomes ac-
tivated. For Aw < T < yo we expect the dc or microwave
conductivity to be o==(e?/2nh)&o/a. For T > y,, the
quasiparticles are well defined and a Boltzmann descrip-
tion applies, so that o= T'? where one factor of T comes
from the density of states and a second factor comes from
a lifetime which is proportional to the density of states.
In contrast, in model I, we find that o is essentially the
normal state conductivity for 7> yAor. This is because
7 is now inversely proportional to the density of states
and the temperature dependence cancels. There is a rap-
id crossover to o=(e?/2nh)&E/a for y < T < yAor. Ac-
tivated behavior will set in only below Aw which is very
small in this case. We note that experimentally the mi-
crowave conductivity appears to be linear in 7 below 40
K for clean samples [6]. While this disagrees with both
models I and II, we emphasize that if the density of states
is energy dependent, an interpretation assuming a con-
stant scattering rate should be viewed with some caution.
For the clean samples, the dimensionless conductance is
of order 400 at about 40 K and the low temperature be-
havior is sensitive to a background subtraction due to ex-
traneous surface absorption [6] so that the localization
effects discussed here cannot be tested. Samples with
more disorder are more promising candidates to test the
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effects discussed here.

The London penetration depth has been calculated ig-
noring localization effect. While the results have been
mainly numerical [19], it is easy to show that A ~2(T)
—A ~2(0) is linear in T for T> ¥y and T2 for T < .
We expect the effect of localization to be manifest for
T < Aw. However, since A ~2(T) measures the spectral
weight of the conductivity, the effect of localization is
more subtle. For example, it is not at all clear that it
should be activated at low temperatures the way the ab-
sorptive part o(w) is. Nevertheless, for T <Aw, it is
reasonable to expect a flattening of the temperature
dependence of A(T). Because of the difficulties in dealing
with localized wave functions, we are only able to provide
some suggestive formal argument below.

We now supply some of the technical details. We be-
gin with model I. The self-consistent Green functions are
G=—(id,+&)/D and F=A/D, where D=ad2+¢E}
+AZ and & =k ?/2m —u. Here 6, =w,+iZ(iw,) and

(o, =u§2k;G(k,w,,). )

The F function does not appear in Eq. (1) because its
contribution vanishes upon angular average over k. We
shall expand around the point ko on the Fermi surface in
the (1,1) direction. It is convenient to introduce a coordi-
nate system parallel (k;) and perpendicular (k,) to
the Fermi surface at ko. Then &=vrk, and Ay=0vk;
where ky=(ky—k,)/V2, ky=(ky+k,)/v2—|ko|, and
vy =+2Aoasin(koxa). The Green function near each zero
of Ay is given by

Gk,w,) =(—id,+vrk)/(@2+vikt+vPk?) ()

and Eq. (1) becomes Z(iw,) =Mug X +,G (k,0,) where
M =4 is the number of gap zeros. Upon analytic con-
tinuation and taking w to zero, it is clear that the integral
is logarithmically divergent and is cut off by vy
=lim,—oiZ(w). This explains why it is necessary to
treat the self-energy self-consistently. The solution for
Ao gF is

y == Agexp(— 2r%pov vrt) . (3)

The quantity in the exponent is of order Agr. The
broadening of the quasiparticle state in momentum repre-
sentation by y in turn leads to a finite density of states p
at o =0 given by Eq. (1) as p=poy27.

We next compute the quasiparticle contribution to the
conductivity o(w) in the limit @— 0. For isotropic
scattering, it is sufficient to keep only the bubble diagram
with the self-consistent Green functions derived above.
Expanding the standard expression in a spectral represen-
tation, we obtain (including spin)

e? 4vf

clw—0)= )

Y [1G"(w=0,k)|?
kik,

+|F"(0=0,k)|?] . (4)
The imaginary part is obtained from Eq. (2) as G"(w =0,
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k) =y/ly*+ (vik )2+ (vpk2)?]  and  F"(w=0,k) =0.
The integral over k,k are easily done, giving

oclw— 0)=(e22xh) Q2/r)vE/v, . ()

Next we consider model II. Instead of Eq. (1) the self-
energy is given by [20-22]

(6)

where T'=n;/npy, c¢=cotp, and golw,)="_(mpy) ~'M
xXiG(k,w,) with G given by Eq. (2). The Born
scattering limit [Eq (1)] is recovered if ¢2 dominate the
denominator in Eq. (6). For simplicity we specialize to
the unitary case 8o =n/2 or ¢ =0. The solution of Eq. (6)
in the limit @ — 0 yields an estimate for yo=iZ(w— 0)
to be

}’0=(rltkpv1/2) 172 = Ao(Ao‘E) -2 5

2Gw,) =Tgo(w,)/lc?—gd(w,)],

@)

where we have ignored a small logarithmic correction of
order In(Ao/T"). As pointed out before [20-22], the essen-
tial point is that for unitary scatterers yo is enhanced rel-
ative to the normal scattering rate I' whereas for Born
scatterers 7 is suppressed relative to  ~'. Indeed, for un-
itary scatterers, the scattering rate y'(w) of a quasiparti-
cle with energy o is estimated to be y(w)=TA¢/w for
Yo < w < Ao.

Now we can estimate the localization length for uni-
tary scatterers. The conclusion that the dimensionless
conductance g==vr/v| = Ep/a=er/A¢ is not changed.
The mean free path, i.e., the distance scale at which
diffusion begins, is now given by vr/yo and we estimate
the localization length to be

&L = (vp/Ao) (Apt) I/zexp(fip/Ao) s (8)

which is reasonably short for a short coherence length su-
perconductor even in the clean limit Agz = 100.

To ascertain the physical significance of the localiza-
tion length we estimate the typical energy level spacing
between states within a localization length, i.e., Aw
=(p&f) ~'. Using Eq. (8) we find

9

For the oxide superconductors, A¢/er=1 and we find
that Aw is a reasonable fraction of yo. The significance of

Aw = yo(Ao/er) exp(— 2er/Ao) .

ow(w) =e’rw _‘azﬂ, Pl pupd(w — Ea— Ep)[1 — f(E,) — f(Eg)1 — 188 1538 (0 — Eo+ Eg) [f (E,) — f(E) 1}

and note that e’zpl,/2m = [§dw ou(w). The first term
in Egs. (13) and (12) corresponds to the creation of a
pair of quasiparticle excitations from the ground state
while the second term corresponds to the scattering of a
thermally excited quasiparticle. If both a,8 are localized
and |E,— Eg| < Aw, the matrix element between them
are typically exponentially small and negligible. If both a
and B are extended, the 7=0 conductivity has a thresh-
old at 2E, and the finite temperature corrections are ac-

Aw is that for T < Aw the localized states begin to de-
couple and conductivity becomes activated. In contrast,
in the Born approximation, we find Aw == y(gpz) ~!
xexp(— 2er/Ag) which is very small for epz > 1.

From now on we assume that the low lying quasiparti-
cles are localized. For a given realization of the random
potential, the effective Hamiltonian is diagonalized
by Yai =ua(Dy (1) +0, Dy () and ya =uy(r)y;(r)
—va(r)y](r), where the Fourier transform of the quasi-
particle wave functions u and v satisfy the Bogoliubov
equations [23]:

Exua (k) + 2 U(Qua(k+q) +Agva(k) =Eu,(k), (10)
q

—&r0a(k) = 2U(Qva(k+q) + Agug (k) =E vp(k) . (11)
q

We follow the discussion of Millis [24] and define the
superfluid tensor p3v=n6yv—p,7v. The normal fluid ten-
sor p" is computed by considering the response of the
quasiparticles to an electromagnetic field. The response
of the order parameter itself is not included in this calcu-
lation; this contribution is accounted for by a backflow
term in the London kernel which enforces charge conser-
vation [24]. We find

n * v
Pwv 5 P Pap =f(E.) — f(Ep)]

2m G E.+Eg
o sl
%Ea_Eﬁ [f(E.) — f(ER], (12)
where

l{,‘ﬁ =<ua| —i8,,/m|u,;>+(v,,| "i&y/”lll‘p) s
Dhs ={u,l —iaﬂ/mlvﬁ — Vgl —i0,/m |u,g> R

are the velocity matrix elements of the Bogoliubov wave
functions. We note that in the presence of disorder, the
first term in Eq. (12) gives a finite contribution even at
T =0, and the terms proportional to f constitute finite
temperature corrections. For nodeless states these terms
lead immediately to thermally activated corrections. In
the present case, the states a,8 may denote localized or
essentially extended states, separated by an effective mo-
bility gap Eg. If a and B are both extended, their contri-
butions are clearly activated. To discuss the case when «
and/or B are localized, we first consider the conductivity
tensor:

(13)

tivated at all w. Finally, if a is extended and B localized,
it is possible to find a power law in T correction to o(w),
but only for w > E,. Thus, we conclude that o(w) as
measured in the dissipative part of a microwave experi-
ment [8,9] must be thermally activated.

For the normal fluid density, it is still true that terms
with a and B both localized make no contribution because
of small overlap. However, if a is extended and B is lo-

1889



VOLUME 71, NUMBER 12

PHYSICAL REVIEW LETTERS

20 SEPTEMBER 1993

calized, we find that a small 7°? correction may exist. In
this case, we argue that for localized states ug(r) and
vp(r) are strongly admixed so that each exhibits the same
kind of random fluctuations, and the matrix elements peg
and /4p are statistically indistinguishable. With this ap-
proximation we find a near cancellation between the two
terms in Eq. (13) resulting in

p"(T) = p™(0) =2m2, | pag| *f(Ep)2Es/(EE—EZ), (14)
af

which is proportional to T2. Since the state B is local-
ized, it is instructive to introduce /55 and phs as matrix
elements of r, instead of —id,/m. Then we have l5 =14
(Eo—Eg) and plis=phs(E,+Eg). If we now make what
appears to be an equally reasonable assumption that
Pas=1lap, we will obtain a T? contribution similar to Eq.
(14) but with a negative coefficient. Thus it is quite un-
certain what this 72 contribution should be, except that
the prefactor is proportional to ﬁ.,z,,, i.e., the square of the
size of the localized states, which becomes smaller for
stronger disorder. Therefore, it is possible that in an in-
termediate temperature regime, the T dependent correc-
tion is dominated by the activated contribution from the
extended states.

An immediate consequence of our picture is that if the
oxide superconductor is d wave or has a zero gap, the ac-
tivation gap in the microwave conductivity and possibly
in A should be correlated with the amount of disorder in
the sample. For the oxide superconductors, it is reason-
able that disorder due to defects off the copper-oxygen
plane may be treated in the Born approximation and that
defects in the plane may be in the unitary limit. For the
best materials, Agz may exceed 100. If these are treated
as unitary scatterers, we expect the localization effect to
be important at an energy scale below yo=A¢(Ag7) —1/2,
which may be of order 0.17.. On the other hand, the
electron doped materials are typically strongly disor-
dered. Indeed, Agr = 1 and T, may be suppressed due to
pair breaking effects. Thus, we expect a large mobility
gap in these samples, which may account for the activat-
ed behavior found experimentally [9]. To test this idea, it
will also be interesting to correlate the activation gap
with the linear term in the specific heat which may arise
from the finite density of states in the gap. We note that
due to repulsion, the localized states may be singly occu-
pied, with a spin which acts like a local moment. The ex-
istence of localized states will also call for a reexamina-
tion of the Knight shift data at low temperatures [4]. Fi-
nally, tunneling into the localized state is potentially a
very interesting phenomenon, particular in point-contact
tunneling where only states localized near the tip of the
electrode may couple, leading to occasional discrete levels
in the gap [25].

I wish to thank Y. Hatsugai and X. G. Wen for discus-
sions. I am particularly indebted to Matthew Fisher who
showed me his results on a related disordered Dirac mod-
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el [26]. This work is supported by NSF through the Ma-
terials Research Laboratory under Grant No. DMR-90-
22933.

Note added.— After the submission of the initial ver-
sion of this paper, we carried out numerical studies which
confirm the localization of quasiparticles near the gap
nodes [27].
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