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Edge Voltages and Distributed Currents in the Quantum Hall EfFect
D. J. Thouless

Department of Physics, FM f5,-University of Washington, Seattle, Washington g81g5
(Received 25 June 1993)

It is shown from rather general assumptions that the current density at low temperatures in
the interior of a quantum Hall device follows the electric field distribution, smeared out over an
appropriate localization length. This is not in conflict with Laughlin's result that the total Hall
current depends only on the potential difference between the edges, but must be used to complement
it. It is illustrated by a discussion of edge and bulk currents for a Hall bar under the conditions of
the integer quantum Hall efFect. It is argued that these results can be extended to the fractional
quantum Hall efFect.
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Two different approaches have been adopted to explain
the quantum Hall effect. In one approach linear response
theory is used to show that the Hall current is propor-
tional to the potential gradient, and the constant of pro-
portionality is an integer (or fractional) multiple of e /h
[1—4]. In the other approach it is shown that the effect
of an imbalance in the electrochemical potential between
the two edges produces an edge current proportional to
the potential difference, again with the same constant of
proportionality [5—7]. Both these arguments are correct,
and one or both of them can be relevant in particular
situations. In this paper I show, on the basis of rather
general assumptions, that in the interior of a quantum
Hall system there is a current density proportional to
the electrostatic field, smeared over a distance equal to
the localization distance at the Fermi energy. This result
is illustrated by a study of the current distribution in an
idealized Hall bar which carries imposed edge currents.
These extra electrons that carry the edge currents pro-
duce an electrostatic Beld in the interior of the bar, and
the electrostatic fields themselves generate a current den-
sity in the interior. A perturbative treatment suggests
that these currents in the interior can carry a substantial
proportion of the total Hall current.

In a two-dimensional electron system with a strong
magnetic field and weak disorder there are two possible
mechanisms for the transport of current. For each Lan-
dau level and for each edge there is a continuum of edge
states which carry the edge current responsible for the
Landau diamagnetism. If there is a difference in electro-
chemical potential between the two edges then the extra
electrons occupying one edge provide a net current along
the edge proportional to the difference in electrochemi-
cal potential. In this case the current is carried by edge
states whose energy is close to the electrochemical po-
tential (Fermi energy). On the other hand, in the case
of a system with the topology of an annulus or cylin-
der, an electromotive force can be generated around the
system by continuously varying the flux in a solenoid
that goes through the center of the annulus or axis of
the cylinder [5,6]. In this case the Hall current is di-
rected between the two edges of the system, in a radial

direction for the annulus or parallel to the axis for the
cylinder, so that all the current must be a bulk current.
Such systems have been the subject of a lot of theoretical
analysis [4,8—10), but the only experimental realizations
I know are by Syphers et al. [11] and by Dolgopolov et
at. [12). Even in the case of a standard Hall bar it is pos-
sible, however, that there is a potential gradient in the
uniform region between the two edges, either due to an
externally applied electric Geld, or due in part to electric
fields induced by some rearrangement of the electrons in
response to the external perturbations, and this potential
gradient produces a Hall current density proportional to
the local field, so that some of the current is carried in
the interior of the system, not at the edges, despite the
lack of electron states close to the Fermi energy in this
region.

In a strong magnetic field the Landau levels in the in-
terior of a sample are separated by energy intervals (mo-
bility gaps) in which any electronic states generated by
random variations of the substrate potential are local-
ized, falling off exponentially from their maximum mag-
nitude over a distance which is the localization length
[13—15]. At very low temperatures thermal excitations
of holes in occupied Landau levels or electrons in empty
Landau levels are negligible, so that the response of a sys-
tem to a perturbation is determined primarily by these
localized states in the neighborhood of the Fermi energy
E~. At the edges of the system the situation is differ-
ent, as there is a continuum of states extended along the
direction of the edge at any energy [6]. In general the
current density at a point r can be written in terms of
the Green function as

1 e
j(r) = lim . dz (ibad —e—A)G(r, r'; z),

2'7l X m

where the integral is taken around a contour that crosses
the real axis at E~ and surrounds the real axis below
that value. Here A(r) is the vector potential, —e is the
electron charge, and m is its mass. Because of the expo-
nential localization of states at the Fermi energy (except
at the edges of the system), and in the complex plane
off the real axis, the Green function in the interior of the
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system depends on small perturbations of the Hamilto-
nian at a distance from r only through terms that fall
off exponentially with the ratio of the distance to the lo-
calization length. Thus, when the Fermi energy lies in a
mobility gap in some region of the sample, the current
density in that region under static conditions depends
only on the conditions in that region, and has only an
exponentially small dependence on conditions in distant
regions. This statement of the dependence of the current
density on local conditions can be combined with Laugh-
lin's [5] argument for the quantum Hall effect to give the
result that the Hall current density is proportional to the
potential gradient in any region where the Fermi energy
is in a mobility gap.

According to the theorem ascribed to Bloch, for which
an elegant proof was given many years later by Bohm
[16], there is no current circulating around an annulus
in its equilibrium state, except for what we now call the
"mesoscopic persistent current" [17] that decreases as the
circumference of the annulus gets larger. In equilibrium
the I andau diamagnetism is manifested by equal and op-
posite currents on the two edges. In addition, if the po-
tential acting on electrons varies over length scales larger
than the magnetic length there will be currents circulat-
ing in opposite senses around the maxima and minima of
the potential.

Laughlin's argument for the integer quantum Hall ef-
fect [5] can be rephrased as a generalization of the ar-
gument for Bloch's theorem. Consider an annulus in a
strong magnetic field, with the Fermi energy shifted by
an amount —t.U between the outer edge and the inner
edge of the annulus. Both of these Fermi energies lie in
the same bulk mobility gap between Landau levels, so
the system can remain in a steady state even though it is
not in equilibrium. Suppose also that there is a solenoid
threading the annulus which can be used to change the
vector potential in the annulus without altering the mag-
netic field. Make an adiabatic change in the Hux through
the solenoid by one quantum, h/e; the vector potential
changes by an amount bA whose integral around the an-
nulus satisfies

at different voltages. This gives the result

j(r)bA(r)d r —NeU = Ih/e —NeU,

where I is the total current around the annulus. This
gives the quantum Hall relation I = Ne U/h, and, by im-

plication, the Bloch result that the current is zero when
the applied voltage U is zero. Mesoscopic currents, which
are neglected in this argument, arise from an oscillatory
dependence of the current I on the fractional part of the
fj.ux threading the annulus.

To show that the electrostatic field in the interior gen-
erates a Hall current density, consider now an annulus
in which the electrons are confined by a potential which
rises at the two edges at Rq and B2, and is more or
less uniform for r well inside the domain Bi & r ( B2.
In this system the current density is zero except in the
neighborhood of the two edges, where, from the theorem
of Bloch, the two circulating currents must be equal and
opposite. This is shown in Fig. 1(a). Next imagine a
smooth step of magnitude bV is added to the potential
for r ) R, , where R, is some radius in the interior of the

Y{r)

6A dr = h/e. ~~ EF
EF

This adiabatic change may shift an integer number K
of electrons from one edge to the other, but will leave
the system still in a steady state. It can be restored to
its original state (apart from some phase twists which
change no measurable quantities) by transferring the N
electrons back to the one edge from the other. Because
the system returns to its original state (apart from un-
observable phase factors), the total energy change in this
process is zero, and it is made up of the change in the
magnetic energy of the current due to the change in vec-
tor potential and the change in electrochemical energy of
the electrons in transferring them between the two edges

FIG. 1. This shows a potential well V(r) confining the elec-
trons in an annulus, together with the induced current j(r).
In (a) the system is in equilibrium, with the same Fermi en-

ergy FF at each edge, and the currents are the equal and
opposite currents giving diamagnetism. In (b) a potential
step has been introduced in the interior without modifying
conditions near the edges, so that the Fermi energy at one
edge is raised relative to that at the other by the amount of
the potential step. This gives an unbalanced contribution to
the current density near the potential step.
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annulus, without changing the potential gradient except
in the neighborhood of r = B,, and without changing the
values of the electron chemical potentials at the two edges
relative to the local potential. This is shown in Fig. 1(b).
There is now a voltage bV/e across the system because
of the shift of the electrochemical potential at the outer
edge relative to that at the inner edge, so we know from
Laughlin's classic argument for the integer quantum Hall
effect that the current around the annulus is Ne6V/h,
where N is an integer. We also know from the discussion
of Eq. (1) that this extra current must be confined to
within a localization length of the step in the potential
at B,. In this way it can be shown that any change in
the potential gradient induces a current density normal
to the gradient, and proportional to it with a constant
of proportionality related to the quantum Hall conduc-
tance. This current density does not follow the potential
gradient precisely, but is averaged out over a distance of
the order of the localization length at the Fermi energy.

Although this argument appears to be restricted to the
case of an annulus, it is not actually so restricted. Since
the current desity depends only on local conditions, the
local relation must be preserved in any geometry. The
current density is therefore given by

j(r) = NV'Ve /h,
where V is the electrostatic potential and 1V is an integer,
for any region in which there are no mobile states near
the Fermi energy.

In an ideal Hall bar at low temperatures current is
forced through from one current lead to the other, and
voltages are applied at the voltage probes to prevent a
net current from flowing through the voltage leads. To
a first approximation all the current flows in the edge
states, since there are no other mobile states close to
the Fermi energy. In such a system there will be an
electrostatic field generated by the extra particles in the
edge states, and this electrostatic field will produce a dis-
tributed Hall current density proportional to the electro-
static Geld. This is true whether the edge dividing filled
and empty states of a Landau level is sharp, as has been
considered by Halperin and most subsequent papers, or
if it consists of a region of partially occupied states, as
Chklovskii, Shklovskii, and Glazman [18] have recently
argued. This field will be screened by the mobile elec-
trons in the region beyond the depletion region around
the inversion layer. It may also be modified by the carri-
ers that generate the longitudinal resistance, presumably
highly activated electrons or holes in the inversion layer.

Similar problems were considered by MacDonald, Rice,
and Brinkman [19] and by Heinonen and Taylor [20],
and an analytic solution for the efFect of a single edge at
very low temperatures was derived by Thouless [21]. The
boundary conditions considered in Refs. [19,21 are not,
however, quite the ones we want to consider here, since
it was assumed that a uniform electrostatic field was im-

posed. The two results that I need from these analyses
are that, in the region distant from both edges, the Hall
current density is proportional to the electrostatic field,
as in Eq. (4), and there is a compression of the electron
density by the field gradient, given approximately by

6p = NV' Vm*/2hB, (5)

where m* is the effective mass of the electrons.
We are not concerned at present with the equilibrium

distribution of the charges and diamagnetic currents, but
with the changes that occur when a Hall current is im-
posed on the edges. In the nearly uniform bar, the trans-
fer of electrons from one edge to the other that this
implies produces an extra electrostatic field in the inte-
rior inversely proportional to the distance from the edge,
since the extra (or missing) electrons on each edge form
a line charge along the edge. The field is inversely pro-
portional to distance up to distances where screening by
carriers in the substrate becomes effective. Equation (4)
shows that this electrostatic field gives a current den-
sity inversely proportional to the distance from the edge,
while Eq. (5) shows that it also leads to a change in den-
sity inversely proportional to the square of the distance
from the edge.

If we write the extra charge density imposed at the
edges as S(x), then the lowest approximation for the re-
sultant potential is

V (x) = S(x')u(x —x') dx', (6)

Ne2
i(x) = S(x')u'(x —x') dx',

so that in the absence of external screening the current
density falls off from the edge as the inverse of the dis-
tance from the edge.

External screening, by charges outside the depletion
region, will cut off this long-range contribution at some
distance greater than the width of the depletion region.
The equations written here are only valid at distances
from the edge which are larger than the magnetic length
lo. Therefore the Coulomb law for line charges

u'(x) = 1/2~eepx (8)

only holds within the inversion layer for distances l

x & l, where l;„is of the order of lo and l is of
the order of the screening length.

From this formula one can make an estimate of what

where u(x) is the screened Coulomb potential due to a
unit line charge. According to Eq. (5), this change in
potential will itself produce a resultant line charge den-
sity proportional to its second derivative, and so a set of
self-consistent equations may have to be solved.

At large distances, according to Eqs. (4) and (6), the
dominant contribution to the current density is
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ledge ~pedgeey'NheB/m*

The ratio of these two expressions gives

(10)

ln ln
ledge 27rh B Ceo /min 7r 27ragyP tmin

where a~ is the Bohr radius for the electron in the semi-
conductor and p is the electron density in the interior.
For the usual conditions of operation the coefBcient of
the logarithm is of the order of 0.2, and the logarithm
can be of the order of 5, so the contribution of the dis-
tributed currents may be rather large, in fact so large
that this perturbative treatment must be improved. If
the edge electrons are less tightly confined than I have
supposed here the contribution of the edge electrons will
be further reduced. Work on this problem is in progress
[22].

Fontein et at. [23] have used an electro-optic method
to measure the potential drop in GaAs under conditions
of the quantum Hall efFect, and find about 80%%uo of the
potential drop at the edges, 20%%uo in the interior. The
calculations by Heinonen and Taylor [20] give a much
smaller proportion of interior current.

Despite this spreading out of the current density, the
Biittiker [7] argument for the importance of the edge
voltages is unaffected. It is the electrochemical poten-
tial difference between the two edges that determines the
magnitude of the Hall current. The distribution in space
of the Hall current does not change the arguments that
have been presented for this [5—7].

Much of this analysis should be valid also in the regime
of the fractional quantum Hall effect. The Green function
in Eq. (1) is exponentially localized if the Fermi energy

proportion of the current is carried directly by the elec-
trons added to the edge and what proportion is induced
in the interior by the electrostatic field of the added elec-
trons. If we integrate Eq. (7) over positive z we get the
induced current in the interior to be

Ne lmax
IjIIt ~ ~pedge ln )

27CCE'0 6 l~j~

where 6p,gg, is the density of added electrons at the edge,
and t is the effective dielectric constant.

It is harder to estimate the contribution of the elec-
trons at the edge to the edge currents, since that de-
pends in detail on the form of the confining potential.
The maximum current will be obtained if confinement is
at a hard wall, as one might get if the inversion layer ends
abruptly in a vacuum or an insulating material. In this
case a rather crude semiclassical estimate of the mean
velocity of edge electrons at the Fermi energy gives the
edge current as

lies in a mobility gap of the quasiparticles, although the
localization length is likely to be longer than it is when
the Fermi energy lies between Landau levels, so Eq. (4)
holds with N replaced by a fraction. There will again be
a current response in the interior to the Coulomb field
produced by the current-carrying quasiparticle states at
the edges.
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