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We argue that for granular metals a sizable fraction of the grains becomes charged because the ener-
gy fluctuation of the highest-occupied level of each grain, as predicted by random matrix theory, is
larger than the charging energy. We have computed the ground state density of states and the degree of
ionization of granular metals. The density of states shows a Coulomb gap around the Fermi energy, pro-
duced by the long-range part of the Coulomb interactions, which should dominate transport properties at

low temperatures.

PACS numbers: 71.70.Ms, 71.25.Mg, 71.55.Jv

The effects of intragrain and intergrain electron-
electron Coulomb interactions are bound to be very im-
portant in granular metals (GM), mainly in the dielectric
regime [1]. Intragrain Coulomb interactions are respon-
sible for the charging energy of the grains and for the
possible formation of a Hubbard-type gap. On the other
hand, in the dielectric regime the long-range intergrain
Coulomb interaction could produce a Coulomb gap, a de-
crease around the Fermi level in the single-particle densi-
ty of states (DOS) [2].

The T2 law of variable range hopping conductivity
has been extensively found in GM and has been interpret-
ed as a manifestation of the Coulomb gap [3]. Photo-
emission experiments and tunnel conductivity measure-
ments of GM in the dielectric regime have also been in-
terpreted in terms of the Coulomb gap [4-6]. Sheng [7]
has given an alternative explanation of both this type of
behavior for the dc conductivity and of the DOS in terms
of the distribution of charging energies. Pollak and Ad-
kins [8] have argued against this explanation and claimed
that the Coulomb model rather than the Hubbard model
best represents GM.

For the Coulomb gap to exist in GM in the dielectric
regime a significant portion of the grains must be charged
in the ground state. Whether this is the case and, if so,
what the ionization-producing mechanism is remains to
be clarified, and it is this problem we wish to address in
this Letter.

The accepted belief, at least until recently, is that the
only two relevant energies are the charging energy of the
grains and the interlevel spacing & near the highest-
occupied level, both due to the microscopic size of the
grains. If this were so, the vast majority of the grains
would be neutral, since the charging energy is much
bigger than this interlevel spacing, and no Coulomb gap
could exist.

Shklovskii and Efros [1] and more recently Pollak and
Adkins [8] have proposed that variations in the *“work
function” associated with the different crystallographic
faces of the grains could be of the same order of magni-
tude as the charging energies and thus be responsible for
their ionization. Chui [9] has claimed that a great
variety in grains size is responsible for overcoming the
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charging energies.

In this Letter, we argue that the large variation in en-
ergy of the highest-occupied level of neutral grains, due
to their random surfaces and small sizes, is the most im-
portant disorder energy of the problem which ionizes a
large portion of the grains. We also calculate numerical-
ly the DOS of GM, taking into account both Coulomb
and Hubbard effects.

In order to study the DOS and the degree of ionization
of GM in the ground state, we consider the following ex-
treme tight-binding Hamiltonian
H=Y ¢;ala;+UX ala;alta; + Y, V,-jaf'aia;aj. 1)

i i i>j

a (a;) is the creation (annihilation) operator of a parti-
cle in grain /; in our approximation, we do not have to la-
bel this operator with either spin or intragrain indices.
As the one-particle energy spacing is much smaller than
the charging energy, the repulsion between electrons due
to the exclusion principle is much less important than
that due to Hubbard effects. ¢; is the energy of the
highest-occupied electronic level in grain i, which strong-
ly fluctuates as we will show. U is the charging energy,
defined as the energy needed to take an electron from a
neutral grain to another neutral distant grain, and equal
to

U=2e%/xd , 2)

where d is the average diameter of a grain and « the
effective dielectric constant of the medium. We calculate
this within a mean field approximation and obtain the
value k=32 for typical Al grains in an AlO3; matrix
whose dielectric constant is equal to 8, with a metal frac-
tion x =0.5, which produces an increase in the dielectric
constant by a factor of 4 [10]. The charging energy is
U =30 meV for typical 30 A grains. V; is the Coulomb
interaction energy between a single charge in grain i and
another in j. For this, we consider the expression
Vij =e2/xr,-,-, where r;; is the distance between the centers
of grains i and j, and the effective dielectric constant « is
the same as for the charging energy. This expression of
Vi; does not adequately incorporate the screening effects
between grains at short distances, although this should
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not change the DOS near the Fermi level Ef for the fol-
lowing reason. At low energies, only the long-range part
of the interaction is relevant; the grains with energies
close to Ef are very far apart and their mutual interac-
tion is well described by V;;. The typical Coulomb in-
teraction is E, =e?/xa =13 meV, where a is the average
separation between grains.

Let us analyze the amount of disorder in the energy ¢;
of the grains. The energy fluctuation of ¢; of different
grains, due to their irregular shapes and sizes, is usually
ascribed as the source of this diagonal disorder in GM.
This fluctuation is supposed to be of the order of the level
spacing & near the highest-occupied level [6], which is too
small, of the order of 3 meV for a grain of 30 A in diame-
ter, compared with the charging energy. However, we
believe that the last assumption is wrong and that the
fluctuations in ¢;, before any charge transfer has taken
place, are substantially larger than é.

Let us study the fluctuations in ¢;, considering that the
grains are metallic spheres with slightly different diame-
ters, whose energy spectrum can be calculated exactly
[11]. A small change in diameter results in a large and
pseudorandom change in ¢; The standard deviation o of
¢: corresponding to diameters between 27 and 33 A, tak-
en every 0.5 A, is equal to 140 meV. This large value of
o could be partly due to the degeneracy of the energy lev-
els, which is clearly not present in real metallic grains.
To avoid this possible degeneracy effect, we have studied
the fluctuations in ¢; for parallelepids with different
edges, but with the same volume as a sphere of 30 A di-
ameter. We choose irrational ratios between the edges to
suppress spectrum degeneracies. We found that the fluc-
tuations in ¢; are of the order of 70 meV, while those in
the energy of the first level are approximately 40 meV.
The large fluctuations in ¢; are due to the fact that we
are adding many uncorrelated energy spacings and that
the low-energy spacings are large and fluctuate widely.
The energy spacings are uncorrelated for classically in-
tegrable systems, such as the spheres and parallelepids
considered, while for classically chaotic systems they
present so-called spectral rigidity, which reduces the fluc-
tuations in the energy difference of levels far apart.

Thus, the surface randomness of real metallic grains
could, in principle, reduce the large fluctuations previous-
ly found. To estimate the importance of this reduction,
we calculate the fluctuations in ¢; for chaotic systems,
which can be adequately described by means of random
matrix theory [12,13]. In the absence of a magnetic field,
so that time-reversal symmetry is preserved, quantum lev-
el spectra of metallic particles are closely simulated by
the Gaussian orthogonal ensemble of random matrices
[13,14]. The variance of the probability distribution of
the energy of the Nth level, using normalized energy
spacings, is equal to [13]

az(N)=—271n‘£(N+l) : (3)
n 2
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To obtain the disorder energy of our grains we have to
“fold” back this expression into absolute (not normal-
ized) units. In order to do so, we take into account that
the average energy spacing for three dimensional systems
goes as i_'/3, where i is the number of the state. We
have numerically calculated the standard deviation o of
¢: for Al grains of different sizes. For a typical 30 A
grain (that has 2% 1280 electrons), we obtain o(1280)
=35 meV, which is of the order of the charging energy.
For diameters d =20, 40, 50, and 80 A, the corresponding
standard deviations are o =76, 20, 13, and 5 meV.

The spectral rigidity, characteristic of random systems,
basically reduces the fluctuations in ¢; to those of the low
energy levels, which are still large when compared with 6.
As a rule of thumb, we can say that the disorder energy
of metallic grains is of the order of the average energy
difference between the first and the second electronic lev-
els.

To our knowledge there seems to be no calculation in
the literature supporting the standard belief that & is the
parameter that sets the scale of the fluctuations. On the
other hand, all our calculations and estimates indicate
that the relevant parameter is the first interlevel spacing
and that the fluctuations are much larger than previously
expected.

Other types of disorder, such as impurities, surface
states at grain boundaries, and the variation of the “work
function” associated with different faces, are also possi-
ble. Furthermore, in impure grains, or clusters of grains,
the spectral rigidity would be lost for energies greater
than the Thouless critical energy [14]. All these effects
would add to the disorder predicted above, and our con-
clusion that the disorder energy is greater than the charg-
ing energy would be even more strongly supported.

In our model, we will assume that the energies ¢; are
Gaussian random variables with a variance equal to that
predicted by random matrix theory, and with no correla-
tions between different grains. In order to simplify the
calculations, we suppose that the grains are never doubly
charged. Thus, we have three possible charge states
per grain: neutral, positively charged, and negatively
charged. This differs from the standard Coulomb gap
model where there are only two possible charge states per
site. We can concentrate only on the highest-occupied
electron of each (neutral) grain. A grain can lose this
electron or can gain a similar electron from another
grain. In this renormalized model, a neutral grain has
one electron, a positively charged grain has no electrons,
and a negatively charged grain has two electrons.

For each grain i, let us define EQ as the sum of its dis-
order energy ¢; and the Coulomb interaction with all oth-
er grains

EP=0i+2 Vijq;, 4)
JEi

where g; is the charge (in units of e) of grain j. The
single-particle energy of an occupied state is defined as
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the energy required to take the electron to infinity, and
the energy of an empty state as that required to bring an
electron from infinity to this state. A grain with no elec-
trons has two degenerate empty states with a single-
particle energy EJ; a singly occupied grain contributes
one hole and one electron state to the DOS with energies
EQ and E?+ U, respectively; a doubly occupied grain con-
tributes two degenerate electron states with energies
EP+U.

If an electron is transferred from a grain / to another
grain j, the change in energy of the system is

Aji=E)—EP’+AU—V};. (5)

The last term is due to the electron-hole interaction be-
tween different grains and causes a Coulomb-like gap.
AU is the change in Hubbard energy of the system, which
depends on the type of transition. There are four possible
one-electron transitions: from a singly occupied to an
empty grain (AU =0), from a singly occupied to another
singly occupied grain (AU =U), from a doubly occupied
to an empty grain (AU = —U), and from a doubly occu-
pied to a singly occupied grain (AU =0). Aj;, in Eq. (5),
must be positive for the ground state to be stable. Our
numerical algorithm ensures that this condition is verified
by all pairs of grains.

In our computer simulation, we start from an initial
state with grains placed at random locations with the con-
straint that they do not overlap. In most of the calcula-
tions, we have considered samples with grains of the same
diameter d. We have also used samples with Gaussian
and log-normal distributions of grain sizes and the results
for the DOS at low energies are fairly similar in all cases.
A set of uncorrelated disorder energies is chosen at ran-
dom from a Gaussian distribution, with the variance pre-
viously obtained from random matrix theory. We assume
that all the grains are initially neutral, which, translated
into our model, implies that every site starts with one
electron. Thus, an algorithm performs in a systematic
way transitions that lower the total energy of the system.
At first, we change the occupancy of single grains until
all the occupied states have negative energies and all the
empty states have positive energies. In this step, there is
no constraint in the total number of particles, but there is
a well-defined Fermi level. In a second step, the algo-
rithm checks all the electron-hole excitations which lower
the total energy of the system. The procedure is similar
to that described by Baranovskii et al. [15] and Davies
[16]. The result is generally a metastable pseudoground
state rather than the true ground state, because stability
against many electron transitions is not ensured, although
earlier studies showed that there is very little difference in
the DOS [15,16]. Most of the calculations have been
performed on samples with 1000 grains and we have
averaged over 1000 runs.

The results for the DOS of Al-Al,O3 are shown in Fig.
1 for d=30 A and a metal fraction x =0.5. The open
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FIG. 1. Density of states for a typical granular metal. The
open circles correspond to ionized grains and the stars to neu-
tral grains. The coefficient of the parabola shown is 1.7 times
the value predicted by Efros and Shklovskii.

circles correspond to doubly occupied grains (for £ <0)
and to empty grains (for E > 0). The stars correspond to
the DOS of singly occupied grains (represented on top of
the previous density of doubly occupied and empty
states). There is electron-hole symmetry with respect to
the Fermi level. Beside this, the density of singly occu-
pied holes is the same as that of singly occupied electrons,
but shifted upwards by the charging energy U.

The total DOS is roughly parabolic, in agreement with
Efros and Shklovskii’s predictions for the standard
Coulomb gap, but the curvature of the parabola differs
with respect to these predictions. The coefficient of the
parabola shown in Fig. 1 is 1.7 times the value c;3
=(3/n)(x/e?)? obtained for the standard Coulomb gap.
This coefficient should go from 0.25¢3 when U =0 to 2¢3
when U is very large [16]. We found that the curvature
of the parabola is independent of the diameter of the
grains for constant x. When x is varied, the curvature
should change because the ratio U/E,. varies, but this
change is hardly noticeable in the range 0.2 < x < 0.6.
In GM, U is always greater than twice E. and the curva-
ture is close to its limiting value, 2c3, for all realistic
values of x. The parabolic shape for the DOS and the or-
der of magnitude of the gap are in agreement with photo-
emission experiments [4] and tunneling conductance
measurements [5,6] on GM.

From the DOS we can obtain the degree of sample ion-
ization. The ratio between the integrated DOS corre-
sponding to the lower curve and the total DOS gives the
fraction of ionized grains. In Fig. 2 we have represented
this fraction as a function of grain diameter. We have
kept the metal fraction constant and equal to x =0.5.
Thus, the dielectric constant does not depend on d, while
the charging and Coulomb energy scale is inversely pro-
portional to d, and the standard deviation of the site ener-
gies goes as oocd ~2. The degree of ionization goes to
zero as the diameter of the grains tends to infinity.

The proposed ionization mechanism does not require
any distribution of grain size, unlike Chui’s model, for
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FIG. 2. Degree of ionization as a function of the diameter of
the grains for a typical granular metal. The metal volume frac-
tion is kept constant at 0.5.

overcoming the Coulomb charging energy [9].

To summarize, the DOS of GM presents a Coulomb
gap around the Fermi level, with a curvature which
differs from that predicted by Efros and Shklovskii’s
model. This is in agreement with the parabolic DOS seen
in photoemission and conductance tunneling experiments.
It also implies that, at low temperatures, transport prop-
erties should be dominated by the long-range Coulomb
interactions rather than by charging effects.

The T2 law, so extensively found in GM, could be in-
terpreted as a manifestation of this type of Coulomb gap.
On the other hand, the overall width of the gap is deter-
mined by the Hubbard energy. Thus, charging energy
effects [7] should be a manifestation of this dependence
on the overall width of the gap.
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