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Zero-Temperature Frequency-Dependent Hall Conductivity of the Anderson Insulator
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Using the Kubo formula and a simplified Holstein model to calculate the Hall eAect in the Anderson
insulator, it is found that at low frequencies o„r ec at (with nonanalytical corrections). The coefficient is

evaluated for strong localization and found to lead to the same order of magnitude as the usual classical
result for the Hall coefficient.

PACS numbers: 71.55.3v, 72. 15.Gd, 72.20.My

Recently, Viehweger and Efetov [1] and Zhang, Kivel-
son, and Lee [2] found that the zero-temperature cr y(to)
in the Anderson insulator vanishes at low frequencies pro-
portionally to co . This result is rather interesting since
the Hall resistivity, which is given by p»„=o„y/(a,
+cr y), is then found to approach a constant as co 0.
This is due to the leading term of cr„—(ito/4tr) ep vanish-

ing linearly as co 0. Here t. o is the dc dielectric con-
stant of the insulator. This observation helps to explain
why the small field Hall coe%cient appears to change
much less than p~ near some metal-insulator transitions
[3,4] as well as around the quantum Hall effect situations
[5,6].

Both the above approaches used the linear response,
Kubo formula for cr y, for noninteracting electrons in lo-
calized states, averaged over the disorder ensemble to re-
store the rotational symmetry. Reference [1] used the
"supersymmetry" method. The analytical behavior of
cr y(co) around co =0 was questioned in Ref. [2], in which
a Kramers-Kronig (KK) type relationship was obtained
for tT„y/co =tr„y. The KK integral for tr,y(0) was proven
on general grounds to be convergent, hence x„y was ar-
gued to be finite. Our results will support the nonanalytic
nature (but, in low orders, just in the imaginary part) of
tT„y. The proof of the finiteness of tr «(0), however, disre-
gards the (perhaps remote) possibility that the KK in-
tegral for tr„y(0) might actually vanish. Since such a
cancellation indeed obviously occurs in the KK integral
for, e.g. , a„,(0) in the T=O insulator, a calculation of
the coefficient of co in cr,y(co), which is of interest in its
own right, is necessary.

Such a calculation, using a simplification of the Hol-
stein [7,8] model, will be presented below. This is the
first step towards addressing the more dificult issue of
the critical behavior of ct„~ (and p„y) on approaching the
localization transition from the insulating side when the
localization length ( diverges [9,10]. In the Holstein
model a finite cr y is obtained for a two-site (we shall use
the term "site" for any localized state) process by allow-

(I /r, / j)(j/rp/I) (j/r, /i)(i/rp/ j)
CO+ COjg'+ l'g N COg.i. + l g

oy(co, H) o' y( 'co, H) . (2)

Therefore the term linear in H must be even in co. Since
the m term is assumed to vanish in the insulator, the
lowest order possible term, assuming a power-law form, is
Bm H. One has to check that B&0 and find its sign
[7,8]. Fortunately, the power series expansion holds for
the co term of the real part of Eq. (1).

As in Refs. [I] and [2], we start from the Kubo formu-
la for a.„y. We shall mainly consider the ensemble-
averaged quantity, c7 y, without the potentially very irn-

portant, mesoscopic fluctuation eA'ects. Electron-electron
interactions are treated only in the most rudimentary
fashion in the self-consistent-field theory:

ing at least the magnetic-field sensitive interference with
higher order, e.g. , three-site, processes. Our method of
calculation differs, however, from that of Holstein [7] and
Friedman and Holstein [8] in that we shall use the Kubo
formula for cr„~(to) for the electrons only. The interest-
ing finding is that the terms linear in H in o.

zy follow
from cr„„upon multiplication by itoH (and, of course, by
important g-dependent factors). Thus the well-known
low-frequency behavior of o„,=i coco/4tr becomes

Reo' y =Be)

for the real part, the imaginary part is nonanalytical, B is
a constant. A finite o.

y at nonzero co yields a finite com-
ponent of the 0 field perpendicular to the original polar-
ization of the electromagnetic wave. This is therefore
equivalent to the Faraday eff'ect [11]. Indeed, the con-
nection between our picture, based on the Holstein model,
and the well-known classical or quantum picture of the
Faraday eAect will be pointed out towards the end of this
Letter.

Before briefly presenting the derivation of our results,
we note that the general symmetries of cr y in fact follow
from the Onsager relation o„J(to,H) =ay„( —co, —H). If
rotational symmetry is restored by ensemble averaging, it
is obvious that o„y(H) = —

rY& (H) (where the bar
denotes ensemble averaging). Thus

1868 0031-9007/93/71 (12)/1868 (3)$06.00
1993 The American Physical Society



VOLUME 71, NUMBER 12 PH YSICAL REVIEW LETTERS 20 SEPTEM BER 1993

where V is the volume, a and P are Cartesian com-
ponents, and h, coj, =E~ —E;, with E; and E~ sin. gle-
electron energies, taken respectively below and above the
Fermi energy, p. We note that, whereas only l(jlxli)l
appears in cr„„, products of matrix elements of x and y
appear in o. ~. While the former is positive definite, the
latter have arbitrary phases and vanish by symmetry at
H=O, for o z.

The Holstein model [7,8] consists in taking i and j to
be localized states on sites 1 (E1 below p) and 2 (E2
above p), respectively. Transitions between them can
occur directly or via (to the next lowest order) an inter-
mediate site, 3, which may be taken, for definiteness, to
have an energy E3& p. The single-site wave functions

l j) (j=1, . . . , 3) are taken to be real and orthogonal and
to have mutual matrix elements J;i. We take lJ~l ~ lE;

E~l. Th—e eA'ect of tunneling is taken into account by
diagonalizing the matrix

E l J l2 J13
'iV—:J21 E2 J23

E; are the unperturbed energies, before switching J;~. on.
The eigenvectors of &' give the "dressed" site states l

j')
and the matrix elements of x and y are evaluated among
the latter. We shall work in the Anderson localized re-
gime far enough from the transition so that the localiza-
tion length g is somewhat larger, but of the same order of
magnitude as the atomic length, (i.e., the spatial extent of
the basis functions lj)). For simplicity we may think
about the case E2 —E l « E3 —E l, since the transitions
are strongest with small energy denominators, although
this assumption is easily relaxed. We have in mind the
case lJ;~l —lJl && lE; —EJ l

—IV (although in the end we

will let in some cases J approach the order of magnitude
of the typical IV). To lowest relevant order in J/lE; —E~ l

and neglecting the matrix elements (i lx l j) (i&j), we find

NJ2]
(2'I x

I
I ') = (x2 —x1)

El —E2

J23J3l X1+X2+ X3, 5
(E1 —E3)(E2 —E3) 2

where N is a normalization constant which may be taken
as unity for our purposes and x~ is the average of x in the
unperturbed state on the site j, xi =(jlxl j). Higher or-
der terms involving x2 —xl were neglected. For a small

magnetic field in the z direction and a flux p in the trian-
gle formed by (x;,y;), i =1,2, 3 (p —Hg ), the whole
eAect of H is to change the phase of the product of the
J's, J12J23J31, by e +' and that of J13J32J21 by e ' [see
(6) below for a definition of p] which can be regarded as
an Aharonov-Bohm (AB) effect. H has to be not so large
as to aAect the site wave functions, thus we take

p—=2xge/hc ~ 1,

where p is equal to H times the oriented area S123 of the
triangle formed by the points, 1,2,3.

We now obtain the small co (ai«ro21) behavior of
Reer~, from Eq. (3) by evaluating the imaginary part of
the expression in the parenthesis. We note that this con-
tribution is a nonresonant one, the denominator is finite.
This is similar (see below) to the evaluation of e„. We
find, denoting 2S123 (x 2 x1)(y 3

—y ) —(y 2
—y1) (x 3—x) with x =(x1+x2)/2, etc. ,

S123(J12J23J31)"'rp
Reo'y~ = sing

~2 I ~ l 3~23
3 (7)

3 4 2

H. (8)
6 cV

Here the occurrence of Sl23 guarantees a nonzero ensem-2

ble average of o.~„. The order of magnitude estimate in

the last term is valid for strong localization, g —a. Here
co~ is the level separation on scale ( [Acp~=[g n(0)] 'j,
J/hcp~ was taken to be of order unity. We note the simi-
larity to the calculation of e„„(see,e.g. , Ref. [9]). In the
strong localization case we find for p„~, the number of
(123) groups being V/g for 3D, and using [9] cr„,

icp((/'i1, )—for g —a, k being the screening length,

3a

where a is the microscopic length. Thus, in the full quan-
tum calculation the classical expression for RH = —1/nec
is recovered in order of magnitude for strong localization.
This is rather nontrivial, since the eA'ect of the magnetic
field in this calculation is purely through the AB phase.
It is remarkable that the result is almost as if the classi-
cal Lorentz force prevailed for the electron with average
drift along the x direction. The sign of such a result was
discussed in Ref. [8] and will be considered below.

It is less straightforward to perform this calculation, as
was done [9] for e„, approaching the localization transi-
tion, g/a ~. This requires a careful evaluation of the
matrix elements (jlxli), etc. and their field dependences.
Since p ~ is of the same order of magnitude deep in the
metallic and insulating ranges, one might heuristically ex-
pect it to stay the same throughout the transition. On the
other hand, naively using our result for large g without

[where the term even in p contributes only to the imagi-
nary part of o3,„(i.e., to e~ )]. Here (J12J23J32) is the
value of the product of the J's at H=O, whose sign was
discussed in Ref. [8]. Note that this has the expected
Onsager symmetry in H and co. To obtain a~„ for the
whole sample we have to sum over all 123 groups. Con-
sider, for example, the term linear in H. Since, by (6) p
too is proportional to Sl23 we find for the contribution of
each (123) group:

7M J M
Recry = (S123) H/yp

(h p321) ~13~23
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justification and disregarding local-field corrections lead
to a divergence [10] of o„«when g ~. Another non-
trivial issue is the evaluation of o„«(T), even at co 0, at
finite temperatures. It might be expected [12] that the
T =0, finite co results would be valid down to a cutoff fre-
quency mo which depends on temperature and the usual
electron-phonon mechanisms, etc. Assuming that a,tt(T)—cr,tt(T=O, to —ron(T)) will yield the temperature in-
dependence of p„«(T) for strong localization. This obvi-
ously needs further treatment and may depend on the
type of insulator considered [2].

As mentioned above, having a a «(co) &0 leads to a ro-
tation of the polarization direction of an electromagnetic
wave with frequency co at 0&0. This is the Faraday
eAect. Indeed, our calculation can be simply vie~ed as a
specific quantum model for the usual classical picture of
the latter [11],again based on the Lorentz force perpen-
dicular to the original electric field direction. In fact, the
sign of our result [Eq. (8)] also agrees with that of the
classical Faraday eAect. For example, a negative J, ap-
propriate to electrons in an ordinary conduction band,
yields a Hall eA'ect corresponding to the classical result
for electrons. Measurements of the Faraday eAect in the
Anderson insulator, especially near the localization tran-
sition, are suggested.
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