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Wigner Crystal in One Dimension
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A one-dimensional gas of electrons interacting with long-range Coulomb forces [V(r) = 1/r] is
investigated. The excitation spectrum consists of separate collective charge and spin modes. For
arbitrarily weak Coulomb repulsion density correlations at wave vector 4k+ decay extremely slowly
and are best described as those of a one-dimensional Wigner crystal. Pinning of the Wigner crystal
then leads to the nonlinear transport properties characteristic of charge density waves. The results
allow a consistent interpretation of the plasmon and spin excitations observed in one-dimensional
semiconductor structures, and suggest an interpretation of some of the observed features in terms
of "spinons. "

PACS numbers: 71.45.—d, 71.28.+d, 72.15.Nj

The properties of models of one-dimensional interact-
ing electrons have been studied in great detail. Examples
are the so-called "g-ology" model of fermions moving in a
continuum [1,2], or the one-dimensional Hubbard model
[1,3,4]. In these models, one usually assumes short-
ranged (efFective) electron-electron interactions. The so-
called "Luttinger liquid" [5] behavior in this type of
model is characterized by separation between spin and
charge degrees of freedom and by power-law correlation
functions, with interaction-dependent exponents. Short-
range interactions are a reasonable assumption for appli-
cations, e.g. , to quasi-one-dimensional conductors, where
screeening between adjacent chains leads to effectively
short-range interactions within one chain [6]. However,
the situation can be quite different if an isolated system of
electrons moving in one dimension is considered. There
then is no interchain screening, and the true long-range
character of the Coulomb forces [V(r) = e2/r] needs to be
taken into account. This appears to be the case, e.g. , in
certain one-dimensional semiconductor structures, where
the effects of one-dimensional Coulomb forces have in-
deed been observed [7].

The purpose of the present paper is to investigate the
efFects of the long-range Coulomb interaction in a one-
dimensional model, using the bosonization method [1,2].
This allows in particular a rather straightforward and
asymptotically (for low energies and wave numbers) ex-
act description of excitation spectra and correlation func-
tions. The main conclusion is that the long-range force,
even if it is very weak, leads to a state characterized by
quasi-long-range order much closer to a one-dimensional
Wigner crystal [8] than to an electron liquid. The cal-
culations presented here provide a rather simple micro-
scopic description of the Wigner crystal, a problem that
in higher dimensions has been difBcult to treat by many-
body techniques.

I will start by considering the particular case of one-
dimensional electrons with a linear energy-momentum
relation interacting with long-range Coulomb forces, de-
scribed by the Hamiltonian

H = 5 v~[(k —kp)at~, al. ..+ ( k —kp—)bid, bg, ]
k, s

) V(q) pq& q+ Hb— (1)

-1 -p
d' (x) = ——) e'"*[v+—(p) + v (&)]

pg0
(2)

where v = p, cr, and p„(p) [cr„(p)] are the usual charge
[spin] density operators for right- (r = +) and left- (r =
—) going fermions. The Hamiltonian then decomposes
into commuting parts for the charge and spin degrees
of freedom. The charge part takes the simple quadratic
form

Here a&, (bI, ,) creates a right- (left-) moving electron
with momentum A: and spin projection s and v~ is the
Fermi velocity. In the interaction term pq = pz q + pt, q
is the Fourier component of the total particle density,
and V(q) is the Fourier transform of the interaction po-
tential. In strictly one dimension, a 1/r Coulomb in-
teraction does not have a Fourier transform because of
the divergence for r —+ 0, however, in a system of finite
transverse dimension d, the singularity is cut off at r = d
[9]. Using the approximate form V(r) = e /gr2+ d2,
one has V(q) = 2e~Kp(qd). Finally, the backward scat-
tering term Hb, describes processes where particles go
from the right- to the left-moving branch and vice versa.
This involves a nonsingular interaction matrix element at
q = 2k~, called gj.

The linear energy-momentum relation makes the
model (1) exactly solvable using standard bosonization
methods. Moreover, at least for weak Coulomb interac-
tions, when states near the Fermi energy play the major
role, linearizing the spectrum is not expected to change
the physics drastically, and one therefore expects that
the model (1) correctly represents the low-energy physics
even for more realistic band structures. The model can
be easily solved introducing the phase fields
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V~

27l

+ — dx dx'V (x —x') 0 P~ 0

dx ~ (1+gi)II + (1 —gi)(B Pp)2

(3)

Here II~ is the momentum density conjugate to P~,
and gi = gi/2irv~. The Hamiltonian (3) is quadratic
in the bosonic fields and therefore can be diagonalized
straightforwardly. The elementary excitations are then
found to be charge oscillations (plasmons), with energy-
rnornentum relation

~, (q) = vF!q!{(I+ gl) [1 gl + 2V(q)]) (4)

where V(q) = V(q)/harv~. The long-wavelength form,
~~(q) =!q lnq!'~, agrees with RPA calculations [9,10];

however, the effect of gi, which is a short-range exchange
contribution, is usually neglected in those calculations.

The spin part of the Hamiltonian does not involve the
long-range part of the interaction and only depends on
the backward scattering amplitude g~. For repulsive in-
teraction, the long-wavelength spin excitations are then
described by a Harniltonian similar to the first term
in (3), giving rise to collective spin oscillations with
~ (q) = u~!q!, and spin wave velocity u = v~+1 —gi.
Together with the charge oscillations (4), these excita-
tions are the complete spectrum of the model.

The bosonization method makes the calculation of
correlation functions rather straightforward. Here, the
charge-charge correlations are of particular interest. Us-
ing the expression

1
p(x) = (v 2/&—)&&p~(x) + e '" e ' ~' * cos[v2$ (x)]+ conste '"~ e '~~'~*l + H.c. ,

the evaluation of the charge correlation function reduces to the calculation of averages of the type

([y (x) —y (0)] ) = q 1+g
q 1 —gi + 2V(q)

(1 —cosqx) = c2V'Inx,

with c2 = g(1+ g ) irvi~/e 20ne thus obtains

(p(x) p(0)) = Ai cos(2k~x) exp( —c2v'ln x)/x + A2 cos(4k' x) exp( —4c2v'in x) +

!where Ai 2 are interaction-dependent constants, and only
the most slowly decaying Fourier components are exhib-
ited. The most interesting point here is the extremely
slow decay (much slower than any power law) of the 4k~
component, showing an incipient charge density wave at
wave vector 4k~ (instead of the usual 2k~ of the Peierls
instability). This slow decay should be compared with
the case of short-range interactions, where the 2k~ and
4k~ components decay as with the power laws 2:
and x 4~~, respectively, with an interaction-dependent
constant Kz [1,2,4]. The 4k~ oscillation period is ex-
actly the average interparticle spacing; i.e. , the structure
is that expected for a one-dimensional Wigner crystal.
Of course, because of the one-dimensional nature of the
model, there is no true long-range order; however, the ex-
tremely slow decay of the 4k& oscillation would produce
strong quasi-Bragg peaks in a scattering experiment. It is
worthwhile to point out that this 4k~ contribution arises
even if the Coulomb interaction is extremely weak and
depends only on the long-range character of the interac-
tion. On the other hand, any 2k~ scattering is consid-
erably weaker, due to the 1/x prefactor in (7) which has
its origin in the contribution of spin fluctuations.

Other correlation functions are easily obtained. For
example, the spin-spin correlations are

(S(x) S(0)) = Bi cos(2k@x) exp( —c2v'ln x)/x +
(8)

where there is no 4k~ component. On the other hand,
correlation functions that involve operators changing the
total number of particles (e.g. , the single particle Green's
function) decay like exp[ —const(ln x) s~2], i.e. , faster
than any power law. This in particular means that the
momentum distribution function nI, and all its deriva-
tives are continuous at k+, and there is only an essential
singularity at k~. The calculations are also straightfor-
wardly generalized to finite frequency and temperature
[1,2], however, the rather complicated formulas are not
of immediate interest here.

The presence of metallic screening changes the above
behavior: a finite screening length (, would lead to a
saturation of V(q) for q ~ 0 at 2e In($, /d). One then
would have, for x ) („ power law decay of the type
discussed above for short-range interactions, with K~ =
I/v'ln(, . On the other hand, if the interaction potential
decays more slowly than 1/r (a rather hypothetical case),
the integral (6) remains finite for x ~ oo, and therefore
there then is real long-range order of the signer crystal
type.

It is instructive to compare the above result (7), ob-
tained in the limit of weak Coulomb interactions, with
the case of strong repulsion (or, equivalently, heavy par-
ticles). The configuration of minimum potential energy
is one of a chain of equidistant particles with lattice con-
stant a, and quantum effects are expected to lead only to
small oscillations in the distances between particles. The
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Hamiltonian then is

2

H = ) ' + —) V"(ma)(ut —ut+ )
l lcm

(p(z) p(0)) = cos(2~z ja) exp
4'

(2me2a) 'i2

(10)
Noticing that k~ = 7r/2a, one observes that the results

where ul is the deviation of particle l from its equilibrium
position. In the long-wavelength limit, the oscillation of
this lattice have energy w(q) = g2/(ma)eql in(qa)l i .
The most slowly decaying part of the density-density cor-
relation function is then

(7) and (10) are (for gi = 0) identical as far as the long-
distance asymptotics are concerned, including the con-
stants in the ezponentials. Equation (7) was obtained
in the weak interaction limit, whereas (10) applies for
strong Coulomb forces. Similarly, the small-q limit of
the charge excitation energies is identical. We are thus
led to the rather remarkable conclusion that the long-
distance behavior of correlation functions is independent
of the strength of the Coulomb repulsion, provided the
interaction is truly long ranged.

In recent experiments, one-dimensional structures with
two partially filled subbands have been investigated [7].
If only the long-range part of the Coulomb interaction is
considered, the appropriate generalization of the model
(3) to that case is described by the Hamiltonian

H, = )
i=0,1

dz vr II, + (0 P~, ,) + — dzdz V(z —z )0 (4'po+ 4', i)& (P,o+ p, y)

where v, is the Fermi velocity of band i, and Pz, ,
the charge fields of band i. In the long-wavelen
the charge oscillation eigenmodes have energies

, Hp,
gth li

are
mit

~+(q) = qlV'2(vo+ vi)V(q)/~, ~ (q) = v'vo»lql

The ~+ mode represents in-phase oscillations of the two
bands and has the typical lq lnql i behavior of one-
dimensional plasmons, whereas the ~ mode is an out-of-
phase oscillation. In addition there are two spin modes,
at energies vp i lql. If the various possible interaction pro-
cesses involving momentum transfer of order 2k', are
included, the velocities of these modes are renormalized,
similar to the effect of g1 in the one-band model above.

For the density correlations of the two-band model I
find

(p(z) p(0)) = C2 cos[4(kp p + kz &)z] exp( —4czdln z)
~ ) C, cos(4k', z) exp( —c,v ln z),

i=0, 1

where now c2 ——/7t(vp+ vy)/e, c, = 4v, cz/(vo+ v&)
K = 4/vpvi/(vp + vi), and again only the most slowly
decaying Fourier components are exhibited. The most
slowly decaying part of (10) [q = 4(k~ p + kp' y)] is again
the one that corresponds to Wigner-crystal-type order-
ing; e.g. , the electrons order approximately equidistantly.
In fact, this type of ordering is determined only by the
~+ mode, whereas all other Fourier componets contain
contributions from the w mode, which lead to power
law decay.

To compare the present results with experiment [7] one
can first notice that, provided that 2k~d & 1 and includ-
ing the background dielectric screening, one has g1 ( 0.2,
and consequently to within a few percent u = v~, i.e. ,
the triplet spin mode [spin density excitiation, (SDE)] is
expected at v~q, as experimentally observed. Further, in

the experimentally accessible range q ( 0.2k~ the plas-
mon energies found here are indistinguishable from RPA
results, and thus the present results provide a good fit to
the experimental plasmon dispersion.

More difBcult to explain is the extra feature which
has been interpreted as an electron-hole continuum [sin-
gle particle excitation, (SPE)] [7]: in fact in the present
model with its linear electron dispersion relation, there is
no such continuum (and it would not exist in an RPA cal-
culation either). However, the model offers an alternate
possibility: together with the triplet spin mode, there
is also a singlet mode [ll]. The existence of the singlet
mode is a consequence of spin-charge separation in one-
dimensional fermion systems, and in particular it is de-
generate with the triplet mode. This mode can be found,
e.g. , in energy density correlation functions (as opposed
to the spin mode, which appears as a pole of the spin den-
sity correlation function), and therefore is also expected
to be seen in the polarized Raman spectra. This inter-
pretation requires the SDE and SPE features to appear
at the same energy, which seems to be consistent with
the results published in Ref. [7]. It is noteworthy that, if
correct, this interpretation would mean that these results
constitute the first direct spectroscopic evidence for the
existence of individual spin-1/2 objects ("spinons"): the
simplest explanation for the observation of degenerate
triplet and singlet modes is that they both correspond to
an excitation of a pair of spin-1/2 objects, with the de-
generacy due to the absence of interaction between them.

One might argue that the existence of the particle-hole
continuum is due to effects of band curvature, which is
neglected in the present model. RPA calculations includ-
ing band curvature certainly predict both a plasmon and
a particle-hole continuum [9,10]. However, within RPA
the total spectral weight for the continuum is about 3
orders of magnitude smaller than that of the plasmon,
whereas in Ref. [7] plasmon and SPE have compara-
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ble weight. Moreover, in exactly solved one-dimensional
models like the Hubbard model [3], one finds both a
plasmonlike collective mode and the singlet mode dis-
cussed above, but no separate particle-hole continuum
[12]. There thus seems to be little theoretical evidence in
favor of an interpretation of the SPE feature in terms of
a particle-hole continuum.

The nearly long-range Wigner-crystal-type order
should have important consequences for transport prop-
erties: in fact, in the presence of disorder, a classical
charge density wave (which has real long-range order at
T = 0) becomes disordered [13],with a "pinning length"
describing the decay of spatial correlations given by

where n is the density of impurities, and V the Fourier
component of the impurity potential at the wave vector
of the charge density wave (CDW) (4A:~ in our case). In-
clusion of quantum effects in systems with short-range
interaction only leads to corrections to the exponent 1/3
in (11) [14]. Following the same arguments, I expect (ll)
to be valid for the Coulomb system too (up to logarith-
rnic corrections); i.e. , as far as low-frequency phenomena
are concerned, the system of electrons interacting with
Coulomb forces behaves like a classical charge density
nave. In particular, all the unusual dynamical proper-
ties associated with nonlinear transport in CDW systems
should also occur in the one-dimensional electron system.

At finite temperature, thermal agitation can become
sufBciently strong to depin a CDW. In the present case,
this is expected to happen when the thermal correla-
tion length, (T, in the absence of impurities, given by
imp(1/(T) = T, becomes shorter than g~;„.

Nonlinear current-voltage relations characteristic of
CDW transport have been observed in one-dimensional
semiconductor structures [15]. In these experiments,
strong variations of the linear conductance with carrier
density have been interpreted in terms of the Coulomb
blockade [16], implying the existence of a pair of strong
impurity potentials. It seems certainly conceivable that
the nonlinear behavior should be due to collective motion
of a pinned CDW, possibly in parts of the sample where
there is only a weak random potential. The fact that
the order of magnitude of the nonlinear conductance is
independent of the value of the linear conductance sug-

gests that different mechanisms are involved in the two
phenomena. The present calculation then demonstrates
that Coulomb interactions do not have to be particularly
strong to create nearly classical CDW type behavior. It
would clearly be interesting to investigate the possible
interplay between Coulomb blockade and CDW-like be-
havior.

In conclusion, using the bosonization technique a con-
sistent microscopic picture of the excitation spectrum
and the correlation functions of a one-dimensional elec-
tron gas interacting with long-range Coulomb forces has
been obtained. The density correlations are those of a
nearly perfect one-dimensional Wigner crystal. The re-
sults are in agreement with excitation spectra observed
in one-dimensional semiconductor structures and provide
a possible explanation for nonlinear transport properties.

I am grateful to D.S. Fisher for pointing out the work
reported in Ref. [15]. Laboratoire de Physique des Solides
is a Laboratoire associe au CNRS.
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