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Frequency-Locked Motion of Two Particles in a Paul Trap
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The nonlinear dynamics of two ions in a Paul trap is known to show chaos or condensation into
a regular "crystal. " We present the first observations of frequency locking of two microspheres
(diameter 10 pm) in a Paul trap, in close agreement with theoretical predictions. This system
reproduces the main features of our earlier work on two-ion chaos. The phase space is fragmented,
and chaotic transients can converge to several regular attractors. Damping, including laser cooling,
can extinguish frequency-locked attractors, explaining their absence in ion trap experiments. Study
of coupled circle maps shows that this is a general phenomenon when three frequencies are present.

PACS numbers: 05.45.+b, 03.20.+i, 32.80.Pj, 52.55.Mg

Laser cooling of trapped ions can produce ionic
Coulomb clusters, in which the electrostatic energy is
comparable to or larger than the thermal kinetic energy
[1,2]. The lowest energy configurations have been called
"ion crystals" and are easily understood as equilibria be-
tween the time-averaged confining force of the trap and
the electrostatic repulsion of the ions. There is also a
phenomenon resembling melting: As the trapping pa-
rameters are varied an abrupt transition occurs between
the crystal and a diff'use, extended state of motion. We
have interpreted this transition, for the particular case of
two ions in a Paul trap, as being between order and deter-
ministic chaos [8]. Further understanding of the dynam-
ics came with the realization that the orbits can evolve
on long time scales before transient chaos reduces to reg-
ular motion. At a critical value of the control parameter
transient chaos gives way to stationary chaos [4].

The simplest cluster is a very elementary nonlinear sys-
tem: two classical particles in a periodic trap potential,
interacting by the Coulomb force. Their motion ideally
follows coupled Mathieu-Coulomb equations, discussed
below, which have both regular and chaotic solutions,
depending on initial conditions. The crystal is the best
known regular solution, but calculations also reveal an
extensive family of frequency-locked orbits [3, 5], closed
orbits with a period that is a multiple of that of the trap
potential. Frequency locking is prevalent in periodically
forced systems when a nonlinearity pulls the natural fre-
quencies into a rational relation [6]. Clearly the periodic
orbits are essential to an understanding of the dynam-
ics, so it is puzzling that frequency-locked motion has
not been found in ion trap experiments [1, 8, 4, 7]. Here
we report the first observation of two-particle frequency
locking, as predicted by our calculations.

Apparatus. —The "melting" and "freezing" of Coulomb
clusters was observed over thirty years ago, in one of the
first demonstrations of electrodynamic trapping [8]. We
have designed a similar apparatus using a Paul trap with
hyperboloidal electrodes (ring radius ro = 1 cm) to con-
fine polymer beads ("microspheres") of about 10 pm di-
ameter, charged to 5—10 p, C/g. Access to the center of

the trap, for particle loading, illumination, and viewing,
is through holes of 3 mm radius on the axis of the end
caps and in four places around the ring. The holes in the
end caps were covered with 0.127 mm pitch Ni mesh to
minimize the distortion of the trapping field. Covering
the ring with mesh degraded the images of the particles
unacceptably, so these holes were left open. The trap and
particle source were enclosed in a rough vacuum of 1.5
Pa to reduce aerodynamic drag. The trap was used as a
filter to select particles with equal charge-to-mass ratio
and a constant potential applied between the end caps to
balance gravity. The beam from a semiconductor laser
was collimated to 4.5 mm diameter, circularized, and di-
rected through the ring electrode, and the light scattered
at right angles was recorded with a video camera. By
modulating the laser current, the illumination could be
pulsed synchronously with the trap voltage, giving a set
of stationary points when frequency locking occurs.

The Paul trap with microspheres has two major ad-
vantages for the study of the basic nonlinear dynamics
of Coulomb clusters. Since the equations of motion ide-
ally depend only on dimensionless combinations of charge
and mass, the dynamics is essentially the same for par-
ticles of any size. The physical time and length scales of
an experiment do depend on size, however, leading to a
fundamental problem when studying trapped ions: the
inability to observe trajectories on the natural dynami-
cal time scale, due to the limited photon scattering rate.
Microspheres scatter more light than single ions, and be-
cause of their smaller charge-to-mass ratio the trap op-
erates at 100 Hz rather than MHz. It is thus relatively
easy to track the particle motion on the time scale of the
trap frequency. Damping is important in practical par-
ticle traps, and in this respect, too, replacing ions with
larger particles is advantageous. Ions are cooled by radi-
ation pressure [9] which has a highly nonlinear velocity
dependence. This additional nonlinearity obscures and
can even overshadow the Coulomb interaction we wish
to study [7, 10]. It may lead to nontrivial dynamics for
only a single trapped ion [11].Moreover, the random na-
ture of photon emission and absorption gives a stochastic
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The equations of motion for a single particle separate
into independent Mathieu equations for each Cartesian
component. For a, = 0 stable single-particle motion
is possible in the parameter range 0 ( q3 ( qM,
where qM is numerically determined to have the value
qM = 0.908046. . . . The bounded Mathieu functions
have a Floquet series expansion [15] which may be in-
terpreted as harmonic oscillations at the secular frequen-
cies w; = 2P, (a, , q, )A modulated by "micromotion" with
frequency O.

For two identical particles the motion separates into a
center-of-mass component, obeying linear Mathieu equa-
tions, and a relative component, which has a nonlinear
contribution from the Coulomb force. Denoting the rel-
ative coordinate by r and introducing a natural unit of
length, [/] = (2ez/mAz) i~a, one obtains the equations of
motion for the Cartesian components r, :

i, + I'r +(a, —2q', cos2v —
~ri )r, = 0. (4)

Here dots denote differentiation with respect to r and
the term in I' describes linear damping due to Stokes's
law. In this system (the Mathieu-| oulomb equations)
the three components are coupled by the Coulomb term
r, /~r~s. Many calculations have been done with the
simplified system having only one radial coordinate,
which shows essentially the same behavior as the three-
dimensional equations.

Equation (4) was investigated by numerical integra-
tion, using the Bulirsch-Stoer algorithm of Ref. [16],
with parameters matching the experiments: a, = 0 and
I' = 10 . The trap then has a single parameter, q3,

component to the light pressure force [12—14]. The aero-
dynamic drag on microspheres is proportional to velocity
and represents a minor modification to the equations of
motion. The principal drawback of microspheres is that
they are not precisely identical, as ions are. Even though
the trap can be used as a filter to select particles with
the same charge-to-mass ratio, some dispersion in size is
unavoidable. Fortunately this does not seem to qualita-
tively affect the motion, provided the mass discrepancy
is not too large.

Equations of motion. —We briefly review the opera-
tion of an ideal Paul trap, defined by an oscillatory,
quadrupole potential,

x +y~ —2z2
V(r) = (Vd, —V, cos At)

2rp

The motion of a particle of charge e and mass m can
be expressed in dimensionless form by introducing a new
time variable, ~ = At/2, and dimensionless potentials,

henceforth abbreviated q. In the crystal the particles
lie in the z = 0 plane, oscillating at frequency 0 about
their average positions. Other stable states were found
by integrating the equations of motion starting with ran-
dom initial conditions corresponding to large total en-
ergy; the ensuing chaotic transient evolves to a stable at-
tractor, either the crystal or a periodic orbit. Although
this method of finding periodic orbits requires some dissi-
pation, the orbits themselves correspond to periodic so-
lutions of the underlying Hamiltonian problem, as was
verified by gradually reducing I' to zero. (These numer-
ical experiments were carried out with the interactive
program "DYNAMICS" [17].) Simulations with I' = 10
showed additional frequency-locked solutions, stable over
narrow ranges of q, which disappeared when I" was raised,
indicating that although dissipation is an experimental
necessity and computationally useful, it tends to desta-
bitize the periodic orbits.

Other perturbations may also destabilize the periodic
orbits. We have investigated this by modifying Eq. (4),
focusing in particular around q = 0.73, where there are
two prominent attractors, with periods 4 and 8. An espe-
cially important perturbation is the nonlinearity due to
the average light pressure force. When it is added to the
Mathieu-Coulomb equations, the only regular solutions
are the crystal and the period-4 orbit. It thus appears
that laser cooling may represent a serious obstacle to ob-
serving frequency locking in ion traps.

Results. —Experimentally, frequency-locked states
were prepared from the two-particle crystal by raising
q to near the stability limit qM, where perturbations dis-
place the particles enough to initiate chaotic motion. If
q is then reduced to a value for which periodic motion
is stable, the chaotic transient can be attracted to this
orbit or to the crystalline state. In this way we have ob-
served four periodic orbits in the region 0.65 ( q ( 0.80.
Pictures of the trajectories, taken with continuous illu-
mination, are reproduced in the left-hand column of Fig.
1 and the corresponding calculated orbits are plotted on
the right. They are labeled by their winding numbers,
m„and m„the rational ratios of the secular to trap fre-
quencies. With the exception of the period-4 orbit, the
winding numbers approximate P„/2 and P, /2, i.e. , the
secular frequencies relative to 0 of a single, undamped
particle at the same value of q. In comparing the ob-
served and calculated trajectories in Fig. 1 several con-
siderations should be borne in mind: (1) The right-hand
column of Fig. 1 shows solutions of Eq. (4) for the reta
tive t"oordinake of the particles. The observations on the
left show the full coordinates of both particles. Since the
center of mass is at rest at the trap origin, the computed
trajectories in full spatial coordinates would look like the
relative coordinate augmented by its reBection in the ori-
gin. (2) The computed trajectories are plotted in radial
and axial coordinates. Actually, the radial motion can
lie in any plane that includes the z axis; in general this
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TABLE l. Experimental and theoretical stability ranges
for frequency locking.

C &+

g

Winding numbers
tur) tuz

(4/4 1/4)
(1/8, 2/8)

(3/22, 7/22)
(5/36, 12/36)

&0.67 —0.762
(0.72 —0.783
0.779 —0.796
0.784 —0.792

0.643 —0.762
0.698 —0.763
0.765 —0.790
0.789 —0.792

Range of q
Observed Calculated

Lower limit was not established experimentally because of
the large extension of the orbits at low q. See the text for

further discussion.
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FI| . 1. Frequency-locked two-particle Coulomb clusters.
Left column: photographs taken with cw illumination. Right
column: computed trajectories of the relative coordinate (r,
z) of the two particles for the same q values and I' = 10
The values of q and winding numbers (ur, w ) are (a): q =
0.72, (4/4, 1/4); (b): q = 0.74, (1/8, 2/8); (c): q = 0.78,
(3/22, 7/22); and (d): q = 0.79, (5/36, 12/36). The mass
ratio of the particles is approximately 1 in (a)—(c) and 1.25 in
(d)

much of the motion.
Under stroboscopic illumination, a stationary pattern

of points is observed, as expected for periodic motion.
For the period-4 and -8 orbits, it is possible to verify the
periodicity by counting the number of points per orbit.
The images of the higher-period orbits are too cluttered
to resolve all the points, especially since they often over-
lap along the line of sight, but it is still significant that
the patterns are stationary.

Once the frequency-locked motion was established, the
trapping voltage was slowly varied to determine the range
of q over which the orbit is stable. The results are com-
pared with numerical solutions of Eq. (4) in Table I and
Fig. 2. For low q the period-4 and -8 orbits become com-
parable in size to the trap itself, preventing an exper-
imental determination of the lower end points of their
stability ranges. The agreement between theory and ex-
periment gives us confidence in the assignment of winding
numbers. Not only do the calculations reproduce the ob-
served frequency-locked states, with one exception they
give only the observed states. The single unobserved, cal-
culated solution in the range of Fig. 2 had winding num-

bers (3/24, 7/24) and existed for 0.730 ( q ( 0.735. It
was sensitive to damping, disappearing at E' = 2 x 10

(w„,w, )

(5/36, 12/36)

(3/22, 7/22)

is not perpendicular to the viewing direction and the ra-
dial motion appears foreshortened. In Fig. 1(c) one also
sees blurring of the edges of the trajectory, due to the
limited depth of focus of the optics. For the period-4 or-
bit, Fig. 1(a), it was ascertained by looking through the
top end cap that the motion was at approximately 45' to
the direction of view. When the resulting foreshortening
is taken into account, the shape of the observed orbit is
in good quantitative agreement with the calculation. (3)
Figure 1(d) also suffers from the limited diameter of the
illuminating laser beam, resulting in a poor image over

(1/8, 2/8)

(4/4, 1/4)

0.65 0.70 0.75 0.80
q

FIG. 2. Stability of periodic motion. The observed (solid)
and computed (dashed) ranges of stability are plotted for the
four observed periodic orbits, labeled by their winding num-
bers. The arrows signify that the lower limits of the period-4
and -8 orbits could not be reached experimentally, as dis-
cussed in the text.
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and was probably only barely stable under our experi-
mental conditions.

We have thus shown that the possibilities for regular
motion in Coulomb clusters are much richer than crystal-
lization alone: rather the nonlinear interaction can lead
to frequency locking in a large family of stable, periodic
orbits. For some parameter values there are several co-
existing attractors, leading to multistability in a frag-
mented phase space. The agreement between our obser-
vations and calculations supports the point of view that
the essential features of Coulomb cluster dynamics are
described by the Mathieu-Coulomb equations.

Our observations were performed in an apparatus with
considerable dissipation, but calculations indicate that
this is not necessary for frequency locking, since the peri-
odic solutions have their origin in the Hamiltonian equa-
tions of motion underlying the dynamics of all Coulomb
clusters. With reduced damping even more frequency-
locked states appear, though they may be sensitive to
perturbations. A numerical calculation with I' = 10
found 28 stable orbits with periods under 100 trap peri-
ods in the range 0.7 ( q ( qM, and it is likely that this
count is incomplete. Even though they may be destabi-
lized by damping or other perturbations, the existence of
these solutions suggests that chaos in ion traps is orga-
nized around multistable, periodic motion.

We expect that similar frequency-locking phenomena
are a general feature of systems with three or more fre-
quencies. Since circle maps have a wide applicability in
modeling physical systems [18],we have considered a sim-
ple model of two coupled circle maps. This has the essen-
tial features of two nonlinearly coupled incommensurate
frequencies with a common driving frequency. For some
choices of the parameters we find behavior similar to the
solutions of Eq. (4): regions where the winding numbers
are rational, with common denominators, interspersed
with zones of irrational winding numbers. Multiple peri-
odic orbits also appear for some parameters. The model
allows more rapid calculations than numerical integration
of differential equations, so it could be more suitable for
investigating universality in multidimensional frequency
locking.

Finally, we speculate on the possibility of observing
frequency-locked, laser-cooled, trapped ions. Calcula-
tions indicate that the large nonlinearity associated with

the cooling presents a serious obstacle, but the parame-
ter space of laser detuning and Rabi frequency has not
been thoroughly explored. Further experiments and cal-
culations will be required to clarify this point.

Debra Fenzel-Alexander provided the polymer sample
with which most experiments were done. The assistance
of Ken Foster in constructing the apparatus and discus-
sions with Mark Seymour on the tribolectric charging of
polymers are also gratefully acknowledged.
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