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Wavelets in Electronic Structure Calculations
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A three-dimensional wavelet analysis is employed to develop a new formalism for electronic structure
calculations. The wavelet formalism provides a systematically improvable and tractable description of
electronic wave functions and overcomes limitations of conventional basis expansions. The potential
power of the wavelet formalism for ab initio electronic structure calculations is demonstrated by a calcu-
lation of ls states for all the naturally occurring nuclei on the periodic table and the interaction energies
of the hydrogen molecule ion.
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Spectral analysis using the Fourier transform (FT) is a
powerful method for solving many problems in science
and engineering. This method, however, is not appropri-
ate for problems that require a localized description in

real space and in Fourier space. Although several tech-
niques, such as the windowed Fourier transform, have
been invented to attempt to overcome this limitation, by
far the most promising new technique is the wavelet
transform (WT) [1]. Unlike the plane wave (PW) basis
functions of the FT, the wavelet basis functions are local-
ized both in real space and in Fourier space [1-4].
Furthermore, multiresolution analysis (MRA) of the WT
provides a systematic successive approximation scheme
for practical applications [1,2]. Applications of the WT
have focused primarily on digital signal processing (1D),
compact image coding (2D), and related fast mathemati-
cal algorithms [3]. Most recently the WT has been ap-
plied to the analysis of chaotic behavior and turbulence in

2D, the coherent states of quantum optics and quantum
field theory, and to real space renormalization group
theory [4].

In this Letter, we introduce a new method for the ap-
plication of WT, in 3D, to electronic structure investiga-
tions of material properties. The traditional ab initio to-
tal energy density functional pseudopotential methods for
electronic structure calculations use either LCAO-type
(linear combination of atomic orbitals) (e.g. , atomic,
Gaussian, or Slater) basis sets or PW basis sets [5].
LCAO-type basis sets typically are capable of describing
the electronic structure with a small number of basis
functions, but lack an explicit and well-defined procedure
for systematic improvement [6], and generally complicate
the calculation of forces because of the presence of large
Pulay terms [7] which must be compensated through ex-
plicit calculation. On the other hand, PW basis sets pro-
vide a systematic expansion of electronic wave functions,
introduce no Pulay terms for supercells of fixed size (thus
considerably simplifying the calculation of forces), but
suAer from the same limitations as the FT method.
Specifically, the description of the rapid variations of the

electronic wave function close to the atomic nuclei (atom-
ic core) requires a large number of PW functions even
though the volume of the atomic core is only a small part
of the total volume of the system. In addition PW basis
sets are, in principle, not well suited for the description of
isolated molecu les and surfaces. This is because the
periodic nature of the basis introduces unnecessary
periodic images and a redundant high resolution descrip-
tion of the vacuum regions.

The "best of all worlds" then would be to have a basis
set that, unlike a PW basis, can zoom into the atomic
core regions and does not introduce unnecessary periodic
images, and, unlike an LCAO-type basis, does not intro-
duce Pulay terms which must be calculated explicitly,
and provides an explicit prescription for complete expan-
sion of the electronic wave functions. The wavelet basis
has all these desired properties: multiscale decomposition
of the wave function, the localized description of the rap-
id variations, and systematically complete expansion simi-
lar to the PW expansion. Therefore, as we demonstrate
in this Letter, the wavelet basis overcomes the limitations
of both conventional basis sets and retains only their ad-
vantages.

The wavelet transform and multiresolution analy
sis.—Given a square integrable function space L (R ),
wavelets impose a hierarchical structure of subspaces
with diAerent resolutions, which forms a multiresolution
analysis. The space of functions at resolution 2 (or
more simply at resolution j) is represented by V~(R ),
and spanned by the basis set of scaling functions at reso-
lution j, [pj ~(r)], where n specifies the center of the basis
function. The hierarchical structure is then

V 2& V ]C Vpt V~| V2

The approximation space V~ is decomposed into a sum of
the coarser approximation space V~ —] and the wavelet
space 8'~ ] which describes the detail at resolution j
(VI =

V& —1$ 1Vl —1) and is spanned by the basis set of the
wavelet functions at resolution j[VI „(,r)]. With a re-
petition of this decomposition, the L (R ) space can be

1808 0031-9007/93/71(12)/1808 (4)$06.00
1993 The American Physical Society



VOLUME 71, NUMBER 12 PHYSICAL REVIEW LETTERS 20 SEPTEMBER 1993

expressed as either the sum of the wavelet spaces of all
resolutions or the sum of one approximation space and
the wavelet spaces of higher resolutions:

0 ~ 0
~ ~ ~

0 ~ 0

~ 0 ~ 0 ~ 0
~ ~ 0 ~ ~ 0
~ 0 ~ 0 ~ 0

Therefore, any square integrable function f(r) can be ex-
panded either as a sum of the wavelet functions of all
resolutions or as a sum of the scaling functions at resolu-
tion j=jo and the wavelet functions of all finer resolu-
tions j~ jo. In this work, we will use the latter expan-
sion because it introduces approximations only at the
high resolution cutoA in practical applications.

With the introduction of two projection operators, AJ.

(approximation operator) and D~ (detail operator), which
project a function into VJ. and WJ, respectively, one may
express f(r) as

~ ~

0 ~
~ ~ ~ o o e
~ 0 ~ 0O

~ ~ o ~ o ~ o ~ ~
0 ~ 0 ~ 0 ~ 0 ~ 0

~ ~ ~ r ~ ~ ~ ~
0 ~ 0 ~ 0 ~ 0 ~ 0

f(r) =A~J(r)+ g D~f(r) . (3)

The approximation and the detail of a function f(r) at
resolution j are expanded in terms of the basis functions,

A)f(r) =pa, „y, ,(r),
n

D~f(r) =gd~, y~, (r) .

(4)

(5)

f(r) =gaj, ,p~, „(r)+ g gd~ „y~ „(r) .
J Jo

(6)

This expansion still contains an infinite number of basis
functions associated with the lattice [n]. Since the scal-
ing functions and the wavelet functions are spatially lo-
calized, one may retain only the basis functions that have
significantly large coefficients in Eq. (6) for the problem
at hand. This leads to an expansion with a finite number
of basis functions and allows one to use diA'erent resolu-
tions for difrerent spatially localized regions. In particu-
lar, for the description of the rapid oscillations of the
electronic wave function in an atomic core region, one
need add higher resolution scales only to the core region
and thereby systematically improve the calculation.

Construction of the wavelet basis set —Although the.
wavelet and scaling functions are far from unique, we
found that the following forms are particularly con-
venient in practical applications. The wavelet functions

y~, (r) are chosen to be the Mexican-hat functions (the
Laplacians of Gaussians) which form a fairly tight frame
[1]. The scaling function po„(r) corresponding to the
Mexican-hat function is chosen to be a Gaussian func-
tion. Both the Mexican-hat functions and the Gaussian
functions are spherically symmetric. The relationship be-
tween the Gaussian scaling function and the Mexican-hat
wavelet function is not exact, but is quite a good approxi-
mation as discussed in Ref. [1]. These localized basis

Combination of Eqs. (3)-(5) and truncation at the finest
resolution j~,„ leads to the wavelet expansion of f(r) as

Jmax

FIG. 1. Top panel shows a two-dimensional arrangement of
the centers of basis functions on a simple square lattice. Open
circles are the centers of the basis functions at resolution j=0,
and filled circles are the centers of the basis functions at resolu-
tion j=1. Bottom panel shows the basis functions that lie
within each support radius that is centered on an atomic posi-
tion (diamond symbol). The larger (smaller) radius corre-
sponds to j=0 (j= 1) resolution.

functions are spatially arranged so that their centers form
a simple cubic lattice [8]. This is shown schematically in
the top panel of Fig. 1. The lattice spacing do at resolu-
tion j =0 is chosen small enough to give a fairly tight
frame [1,9]. The basis functions with resolution j are ar-
ranged correspondingly on the lattice sites with lattice
spacing dp/2 . The centers of basis functions for diA'erent
resolutions are selected so as not to overlap, and the
centers of all the basis functions form a simple cubic lat-
tice with spacing do/2™1. In order to construct a finite
basis set we collect the most important basis functions by
introducing spheres of finite support radii at each nuclear
center. This is illustrated schematically at the bottom
panel of Fig. 1. Correspondingly smaller support radii
are chosen for correspondingly higher resolutions so that
deep core regions have more resolution scales. We desig-
nate this finite basis set as [po „(r),y~ „(r);j,„)j)0].

The hydrogen atom. —In order to gain a sense of the
optimal values of the various parameters of the formal-
ism, we chose to study the hydrogen atom as a simple test
case. After performing calculations using many diAerent
resolution scales and diferent support radii, we find that
a satisfactory minimal basis set for the hydrogen atom
contains 25 basis functions with four resolution scales (7
scaling functions for j =0, plus 6 wavelets for j =0, plus

1809



VOLUME 71, NUMBER 12 PH YSICAL REVI EW LETTERS 20 SEPTEMBER 1993

0.60 0.00

0.40 -0.50—

0.20

0.00

N
N

LLI

-1.50—

r (au) -2.00
20 40 60

I

80 100

FIG. 2, The ls radial wave function of a hydrogen atom cal-
culated with 25 basis functions (7+ three 6's). The continuous
line is from the wavelet calculation, and the broken line is the
exact wave function.

FIG. 3. The filled circles are the 1s eigenenergies o
'

s of all the
le (Znuc ei wit even a ol

'
h tornic numbers on the periodic tab e

=2,4, . . . , 92) calculated with the fixed 67 basis function set.

6 wavelets for j=1, plus 6 wavelets for j=2 which we
sim 1 as (7+ three 6's). These correspond re-

spectively to support radii of 1, 0.5, 0. , an
The calculated 1s eigenenergy is within 2% of the exact

1 d the calculated 1s radial wave function is s ownvaue, an ec
in Fig. 2. The calculated wave function u&«ers rom
exact one primar& y near'1 the origin (within the resolution
imit I,„). The small diA'erence at r=2 a.u. is due to t e

finite support radii used for the basis se . y
the basis set to unc io85 f ctions with three resolution sca es

rt radii of 2, 1,(33+two 26's, with corresponding support radii o
and 0.5 a.u. ), this difference reduces to 0.3%, an wand we can

0.5% of the exactobtain the 1s eigenenergy to within 0.5% o
value.

Hydrogen to uranium. —By adding more rore resolution
scales, one can cacu a e1 1 t the wave functions of heavier

f ll . As the atom-nuclei within the same accuracy as .o"ows. A
ic number increases, the Coulomb potential becomes

d nsequently higher resolution scales are
needed in the core region. However, only one a itiona
resolution sca e nee s o1 d t be added each time the atomic
number doubles. Therefore, for the description o s
wave functions from hydrogen to uranium, one nee s to
use a basis set with eleven resolution scales (7+ten 6's .

Using this fixed basis set consisting of only 67 basis func-
tions, one can calculate (to within 3%) the Is eigenvalues
of all the naturally occurring nuclei on the periodic ta e.

ty, only the even nuclei. Note that the eigenvalue for

a constant percentage so that the results appear to lie on
a straight line as expected.

The h drogen molecule ion. —We now investigate the
eftic&ency ofti

' of the wavelet basis for the description of chem-

of an Hq+ molecule as a function of the separation c-
the two protons. The total energy electronictween e w

eigenenergy p usplus the Coulomb potent&al energy is p
f R in Fi . 4. The basis set for the calcula-

for the h-tion is selected using the same support radii as for t e y-
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FIG. 4. The total energy of a molecular hydrogen ion is
shown as a function of the separation between the nuclei. The
filled circles are the calculations with 141 to 167 basis functions
depending on the separation R while the open circles are the ex-
act values. e inse s owTh

'
t h s fine detail of the calculation in the

vicinity o a c ange inf h basis illustrating that basis-change
eAects are at less than the meV level.

drogen atom calculation with the larger basis set (33+
two 26's), and the total number of basis functions varies
between 141 and 167 [10] depending on R. We note that
the calculated values in Fig. 4 are very close to the exact
values [11]and are larger than them by a nearly constant
amount of 1%. This implies that the wavelet basis gives
an eScient representation of the chemical bond and also
gives an excellent representation of interionic forces.

Comment on Pulay forces It is .i—mportant to note
that the centers of the basis functions do not follow the
nuclei as they move; the underlying basis set is not corre-
lated to the ionic positions. Just as in the plane wave
case this ensures that the finite underlying wavelet basis
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introduces no Pulay terms for a fixed calculational cell.
Although, in practice, it is possible to use the full under-
lying basis, it is much more convenient to introduce the
support spheres as we have done above. This does intro-
duce a position dependence into the basis by selecting the
basis set as illustrated in the bottom panel of Fig. 1.
However, simply increasing the size of the support radii
to where the wave fUnction coeNcients for the wavelets
near the edges of their respective spheres are near zero
controls the magnitude of resulting Pulay corrections and
eliminates the need for their explicit calculation. Design-
ing the basis to give a good representation of the wave
functions and their eigenenergies imposes this condition
on the coefficients automatically, making the treatment of
Pulay forces very simple in the wavelet formalism, as our
molecular ion calculation illustrates. Although the cutoA
radii for this calculation were chosen on1y with the repre-
sentation of the atomic wave functions in mind, the eA'ect

on the calculation from sudden changes in the basis set is
extremely small, as the inset in Fig. 4 shows. The inset
displays a representative example of the detailed behavior
of the wavelet calculation on either side of a change in

basis set. The discontinuity in the energy is extremely
small (0.3 meV) as is the jump in force/slope (= I

meV/A).
Conclusions. —To extend this approach to many-

electron systems within the local density approximation,
one can simply use traditional techniques for the in-
clusion of Hartree and exchange-correlation interactions,
expanding the charge density and other relevant fields
in the wavelet basis as well. In particular, schemes
developed for localized basis sets [12] provide one possi-
ble framework for this extension. It is not clear at
the moment that the inherent advantages of the ~avelet
basis will make it more attractive for practical calcula-
tions strictly within LCAO-type computational frame-
works because, at present, the wavelet expansion of atom-
ic states still requires more functions per atom than do
corresponding LCAO-type representations. The same is
true of plane wave expansions, which nonetheless are
competitive with traditional local basis schemes because
of the efficiency of the fast Fourier transform. There ex-
ists an analogous fast wavelet transform, and work
currently is underway to investigate its exploitation and
the competitiveness of the resulting computational frame-
work with both LCAO-type basis and plane wave ap-
proaches.

In comparison to the plane wave approach, we expect
wavelets to prove most advantageous in situations which
require a spatial resolution which varies significantly
throughout space, including systems involving first row
elements or transition metals. Also, the local nature of
the wavelet basis ensures that the wavelet transform maps
far more naturally than does the fast Fourier transform

onto the latest generation of massively parallel computer
architectures. On the other hand, it is unlikely that mul-
tiple resolutions will benefit systems such as pseudopoten-
tial silicon directly in terms of numbers of basis func-
tions.

Finally, multigrid approaches provide another possible
avenue toward spatially variable resolution. We have not
explored this direction in depth, and we do not know what
will be the advantages and disadvantages of this approach
over the wavelets. It is noteworthy, however, that the
basic diAerence between the two is that wavelets are a set
of basis functions whereas multigrid is a method for solv-
ing a discretized set of equations.

In conclusion, the trivial process of introducing a Bloch
transformation of the wavelet functions extends straight-
forwardly the current analysis to periodic systems [13].
With the extensions to many-electron systems and period-
ic systems, the wavelet formalism way open a completely
new direction of development for ab initio total energy
calculations.
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