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Laboratory-Frame View of Nuclear Rotation
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A novel interpretation of nuclear rotation is presented. It is shown that, in and near the ground state,
the proton and neutron deformed ellipsoids are rotating in opposite directions, whereas they rotate about
almost the same axis in states of higher spins. This holds, quite similarly, for angular-momentum-

projected Nilsson wave functions and for wave functions in the interacting boson model. The rotational
energy can then be interpreted in terms of an inertial parameter against tilting of the proton rotation
axis towards the neutron axis.

PACS numbers: 21.60.Ev, 21.10.Re, 21.60.Fw

Rotational motion is the most prominent mode in nu-
clear structure, and it appears in a large number of nu-
clei. In this Letter, we shall discuss the rotational motion
in the ground-state (rotational) band of even-even nuclei
with relatively low rotational frequency. The intuitive
picture of such low-frequency nuclear rotation is that the
nucleus is deformed in an ellipsoidal shape, and this ellip-
soid rotates about an axis. We shall restrict ourselves to
axially symmetric prolate deformation where the above
rotation occurs about a shorter axis The nuclear many-
body system consists of protons and neutrons. We there-
fore introduce the proton ellipsoid and the neutron ellip-
soid, which correspond, in the Nilsson model, to the pro-
ton intrinsic state and the neutron intrinsic state, respec-
tively [1,2]. In the interacting boson model (IBM) [3], a
separation of proton-neutron degrees of freedom is also
present in its proton-neutron version, IBM-2 [4-6]. In
this Letter, we shall study the rotation of the proton ellip-
soid and that of the neutron ellipsoid in terms of the
Nilsson model and the IBM-2. As stated in most text-
books of nuclear physics, it has been supposed rather a
priori that the proton ellipsoid and the neutron ellipsoid
rotate together in ground-state rotational bands. We wi11

be led to a rather novel picture of the rotation as we shall
see in the following.

We start with the Nilsson model [1,2], where nucleons
are confined in a quadrupole deformed potential (Nilsson
potential), and a pairing interaction acts between either
protons or neutrons. The proton intrinsic state, l@ ), is

written in the form of the BCS ground state in terms of
the canonical single-particle basis states of the Nilsson
potential. The neutron intrinsic state, l@,), is determined
similarly. The subscripts z or v indicate, respectively,
protons or neutrons. The total Nilsson wave function is
given by their product, l+)=lN„)xl+„), and describes
the structure of rotational nuclei. This product relation is
found in some other mean field theories, for instance,
Hartree-Fock-Bogoliubov (HFB). The proton or neutron
Nilsson wave function is given as

I+&~&w II (u +» a'a ')I», - (1)
m)0

where the subscript n or v is omitted for brevity, u and v

denote the BCS u and v factors, m represents the canoni-
cal single-particle basis with m being its time-reversed
state, and at stands for the nucleon creation operator.
Formula (1) contains the particle number projector Ptv,
because the number-conserving BCS/HFB code based on

the method of Ref. [7] is used.
The Nilsson wave function is obtained with a deformed

potential, and hence does not have a good angular
momentum. By projecting the Nilsson wave function
onto components with good angular momenta, one ob-
tains members of a rotational band, the ground-state
band in the present study. We then carry out the projec-
tion onto a good total angular momentum J. We consider
the axially symmetric deformation with K =0+; the ac-
tual calculation is performed by the standard method of
integration over the Euler angle P, where matrix elements
of a scalar operator 0 are given by

JOJ = f0dPsinPdoo(P)(+lOexp( —iPJ~) l+)
2

fo dPsinPdoo(P)(+lexp( —iPJ~) l+)

where J~ is the y component of the total angular momen-
tum operator J, and doo denotes a d function.

We show the result for ' Sm as an example. The de-
formation parameter is taken as 6=0.30, and the mono-

pole pairing interaction is set with the pairing gap —0.8
MeV. We take the Z=50-82 major shell for protons,
and the N =82-126 major shell for neutrons. Although
in principle we can take more than one (spherical) shell,
the following conclusion is rather independent of this
truncation, which makes the numerical calculation much
easier. The cranked term, which is used very often for
high-spin states, is not relevant because of co = 0 in and
near the ground state.

The feature we focus on is the matrix element of the
operator

F,=(J J,),
where the centered dot denotes a scalar product, and J
and J„are axial vectors denoting the proton and neutron
angular momentum operators, respectively (J =J +J.).
We discuss here how J and J, are coupled to J in the
present cases. The proton intrinsic state has axial sym-
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metry with K =0+. Therefore, for the z axis being the
symmetry axis, I@ ) can be expanded into components
with good angular momenta as 100—
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Ie.& =pc.(J.) I J.,M. =O&, (4)

I~& =I+.&I+.& =2 uJ I+I&. (s)

where C indicates amplitude as a function of J; I J,M )

is the component projected onto the angular momentum
J and its z component M . Note that M =0 due to
K =0+. In the present study, a state IJ,M &0) is gen-
erated by an appropriate rotational unitary transforma-
tion from IJ„M =0). The set of all the states IJ,M, )
thus constructed provides us with the complete basis for
the present study. Because of its construction, the state
I J„M,) implies the rotating state of the proton ellipsoid
at an angular momentum J, and the proton angular
momentum J, refers hereafter to the rotation of the pro-
ton ellipsoid. The same argument is applied to neutrons;
the neutron angular momentum J, refers to the rotation
of the neutron ellipsoid. The total intrinsic state I%') can
be expressed as a linear combination of components with
good angular momenta:
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FIG. 1. Scalar product of the proton and neutron angular
momentum operators for ' Sm. The wave functions are ob-
tained (a) by the angular momentum projection of the Nilsson
wave function and (b) by the SU(3) limit of the IBM-2.

with

I ej)—= 2 c.(J.)C,(J„)
J„,J, +J

x (J,O, J„,OI J,O) [IJ ) I J,) lo (6)

where (J,O, J„,OIJ, O) denotes a Clebsch-Gordan coef-
ficient, [IJ ) I J„)lsd implies the angular momentum
coupling to J and its z component M, and eJ
=[QJ,J,jC,(J )C,(J,)(J„O,J„,OIJ, O)j ]' . The state
I+I) is nothing but the normalized angular-momentum-
projected state from I%'), and includes various combina-
tions of

I
J ) and

I J,) in general. On the other hand, for a
given J (J,), there is just one basis, I J ) (IJ,)), which is
a state of the rotating ellipsoid. Note that, although Eqs.
(5) and (6) are useful for gaining insight, the actual pro-
jection calculations are carried out directly on
without using I J,) or I J,).

Figure l(a) shows the expectation value of F „ for
J=0-24 in the ground-state band of ' Sm. We point
out that F, takes negative values for J=O-6 in Fig.
1(a). The negative values mean that J, and J„point to
diA'erent directions with an opening angle greater than
90'. In other words, contrary to the familiar picture that
the proton ellipsoid and the neutron ellipsoid rotate to-
gether, these ellipsoids rotate about significantly diAerent
axes in such low-spin states. In order to see the physical
meaning of this tendency, we calculate the angle 0
defined by

with respect to the ground-band state with the total angu-
lar momentum J. The implication of the angle 0 is clear:
It is the angle between the axial vectors J and J„. If the
angle 0 is near 180', the proton ellipsoid and the neutron
ellipsoid rotate in almost opposite ways. This is the case
here, and it is schematically illustrated for the ground
state in Fig. 2. Figure 3(a) presents the classical picture
of the axial vectors J and J, for several states in the
ground-state band of the present case. In Fig. 3(a), the
magnitudes of J and J, are represented, respectively, by
j((J, J )) and Q((J„J„)),while their opening angle is
defined by 0 in Eq. (7). It is obvious now that the angle 0
becomes smaller as the total angular momentum in-

(7)

where the angular brackets denote the expectation value

FIG. 2. Schematic picture of the rotation of the proton ellip-
soid (upper) and that of the neutron ellipsoid (lower) in the
ground state.
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FIG. 3. Classical picture of the proton and neutron angular
momenta in the ground-state rotational band of ' 6Sm (a) in

the Nilsson model and (b) in the SU(3) limit of the IBM-2.
Upper (lower) solid arrows denote the proton (neutron) angular
momentum axial vectors. Dotted arrows are the total angular
momentum vectors.

creases. In the lowest states of J=0, J and J, are of
sizable magnitude and point in almost opposite directions,
and, in high angular momentum states, J and J, are
aligned in nearly the same direction. In other words, in

the lowest states, the proton ellipsoid and the neutron el-
lipsoid rotate inversely so as to yield a nearly vanishing
total angular momentum, while these two ellipsoids rotate
in almost the same way in higher spin states. The latter
is very close to the conventional picture of the nuclear ro-
tation, whereas the former appears to be rather novel.
Although J and J„fluctuate in quantum mechanics, their
average correlation can still be evaluated by J .J„and is
interpreted in terms of 8 in Eq. (7).

We comment on how
~
J ) and

~ J,) distribute in Eq.
(6). In the case of J=O for the above example the
squared amplitudes in ~%'J) are 13%, 43%, 30%, and 11%,
for J =J,=O, 2, 4, and 6, respectively. One might ex-
pect that only the J =J,=O component has a large prob-
ability and the other components are included as a conse-
quence of fluctuation. This is not the case; the above re-
sult shows that the probability is concentrated into
J =J,=2 and 4, ~hereas the probability of J J„=O is
rather small. The probability distribution is shifted fur-
ther away from J =J„O for stronger deformation.

The above results are obtained by variation before pro-
jection. Since the deformation is strong enough, this is a
good approximation. However, in order to confirm the
present consequences without such an approximation,

shell-model calculations for s-d shell nuclei, Ne, Mg,
etc. , have been carried out [8]. Several standard two-
body interactions with short-range character are used.
The results are essentially the same as those presented
above.

We shall study the same problem in the IBM. Among
its three symmetry limits, the SU(3) limit is suitable for
the rotational motion. In this limit, the intrinsic state can
be introduced, and its relation to the intrinsic state of the
geometrical description has been discussed [9-11]. How-
ever, the laboratory-frame picture of the rotational states
has never been discussed for the IBM either.

The ground band of the IBM-2 system with
N =N, =6 in the SU(3) limit is taken as an example
with N (N„) being the number of proton (neutron) bo-
sons. This corresponds to the ' Sm discussed above. We
calculate matrix elements of the operator

F:,=(J.' J,'), (8)

where J and J, are axial vectors denoting the proton-
boson and neutron-boson angular momentum operators,
respectively. The superscript 8 is introduced so as to dis-
tinguish from fermions (nucleons). The calculation is

made for the exact eigenstates of the SU(3) Hamiltonian
in the laboratory frame, while the technique in Eq. (2)
for the SU(3) intrinsic state yields the identical result. In
the present study, boson counterparts of the

~
J )'s in Eq.

(4) are the ground-band members of the proton-boson
SU(3) system, i.e. , the (X,p) =(2N, O) representations,
and therefore mean the rotating state of the proton ellip-
soid. Thus, J, represents the rotation of the proton ellip-
soid about an axis perpendicular to the symmetry axis of
this ellipsoid. The same argument holds for neutron bo-
sons. Figure 1(b) presents the expectation value of F„in

Eq. (8) for all the ground-band states. In the usual view

based on the F-spin symmetry, it has been believed
without an explicit reason that, in low-lying states, the
proton ellipsoid and the neutron ellipsoid rotate together
but very slowly. In this view, the expectation value of F „
should be a small positive number. Note that the present
IBM-2 states are totally symmetric in F spin [4,6, 12].
The most striking feature in Fig. 1(b) is that the expecta-
tion value of F, in Eq. (8) is negative for the states of
J=O-6 and not necessarily small near the ground state.
We calculate the angle 8, defined similarly to Eq. (7), to
clarify the physical meaning of this result. The intuitive
picture of J, and J, is presented in Fig. 3(b) in a similar
manner to Fig. 3(a). The nearly identical result to Fig.
3(a) is obtained, and the same physical picture holds as
the one obtained for the Nilsson wave function.

We now discuss the common features obtained so far.
In the ground-state rotational band, the proton ellipsoid
and neutron ellipsoid rotate almost inversely in and near
the ground state. In moving to higher spin states, the el-
lipsoid rotation axes become more aligned. The total an-
gular momentum of the low-spin states is formed by the
tilting of the proton ellipsoid rotation axis towards the
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neutron one. Thus, the inverse rotation between the pro-
ton and neutron ellipsoids and the tilting of their axes
characterize the rotation at lower rotational frequencies.
Because of the quadrupole deformation, the density local-
ization in a small azimuthal area around the symmetry
axis occurs in the intrinsic states. Since (J ) and (J,) are
related to this localization through the uncertainty princi-
ple, there is no way to make these quantities small in de-
formed states. We also mention that the present inverse
rotation picture is consistent with the absence of the
ground-state rotational band in single-closed nuclei,
where the inverse rotation is not present due to a missing
partner within the valence space. Finally, we remark that
Figs. 2 and 3 are highly intuitive; although J and J, are
in a plane in those figures, they can be on diAerent
planes, because various magnetic substates contribute
with the weights given by Clebsch-Gordan coefficients so
as to form a total angular momentum. This does not
change the results of the present study, because their
correlation [i.e. , the scalar products in Eqs. (4) and (8)]
should remain as discussed above.

After having obtained the picture of the nuclear rota-
tion in the laboratory frame, we should address the ques-
tion of the energy of the rotational states. In the ground
state, the wave functions of the rotating proton and neu-
tron ellipsoids have the precisely opposite axes, and hence
the wave function of the rotating proton ellipsoid and that
of the rotating neutron ellipsoid have maximum spatial
overlap. This situation is similar to the pairing interac-
tion. In the 2+ state, J is not completely opposite to J,.
Thus, J is tilted somewhat towards J,. We now intro-
duce the proton (neutron) rotation disk representing the
average distribution of the rotating proton (neutron) el-
lipsoid. The proton rotation disk and the neutron rotation
disk are completely identical in the ground state because
J and J„are completely opposite. In the 2+ state, the
proton rotation disk is also tilted due to the tilting of its
axis, and the wave function of the rotating proton ellip-
soid has a somewhat smaller overlap with that of the neu-
trons in comparison to this overlap for the ground state.
The smaller overlap means in general a smaller gain in
the binding energy. Thus, by tilting J towards J„(or
vice versa), the total system loses some attractive energy,
and this energy loss results in the rotational energy, for
lowest angular momentum states. In other words, the
moment of inertia can be considered partly as the inertial
parameter against the tilting of the proton and neutron
rotation axes. Note that the J=0 state is formed by a su-
perposition of various components

~
J =L,M =M)

~ J„
=L,M„= —M), and therefore gains a sizable energy
from of1'-diagonal matrix elements among them. In fact,
the proton-neutron quadrupole interaction produces such
matrix elements. A similar mechanism is present for
low-lying states, whereas high-spin states can obtain less
energy due to more limited configurations.

It is worthwhile to mention the cranking calculation of
the moment of inertia. Since the change in tilting angle

for hJ=2 is rather small, the structure change between
them is small, and the eA'ect may be treated in a pertur-
bative way, i.e., the Inglis formula [13].

Another aspect to be mentioned is the net matter Aow.
For 2+, for instance, if one sees the nucleus from the
direction of the total angular momentum (from the right
in Fig. 3), the rotation of the proton ellipsoid is not com-
pletely canceled by the rotation of the neutron ellipsoid
for the motion projected onto the plane perpendicular to
the total angular momentum vector J. This remaining
How corresponds to the slow rotation in the classical pic-
ture.

The inverse rotation produces a finite value of
(0+~(J —J„) ~0+), which is related to the scissors-mode
M 1 sum rule [12,14]. Observed values of this sum rule
in deformed nuclei [14] provide experimental support.

In the present study, the total angular momentum is di-
vided into J and J, based on the property of the de-
formed mean field. In other quantal systems, however,
diA'erent divisions may be taken; for instance, in Be, the
division into two a clusters will be more appropriate.
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