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Effect of Focusing and Caustics on Exit Phenomena in Systems Lacking Detailed Balance
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%'e study the trajectories followed by a particle weakly perturbed by noise, when escaping from the
domain of attraction of a stable fixed point. If the particle s stationary distribution lacks detailed bal-
ance, a focus may occur along the most probable exit path, leading to a breakdown of symmetry (if
present). The exit trajectory bifurcates, and the exit location distribution may become "skewed" (non-
Gaussian). The weak-noise asymptotics of the mean escape time are also aAected. Our methods extend
to the study of skewed exit location distributions in stochastic models without symmetry.

PACS numbers: 05.40.+j, 02.50.—r

A particle moving in a force field, but weakly per-
turbed by external noise, will spend most of its time near
stable fixed points of the force field. But the particle will
occasionally undergo a large fluctuation: It will leave the
basin of attraction of one such point, and enter that of
another. The time scale on which such Auctuations occur
grows exponentially in the low-noise limit.

In this limit, the particle typically follows a unique tra-
jectory in its final, successful escape attempt; deviations
from this path become increasingly unlikely as the noise
strength goes to zero. This trajectory is known as the
most probable escape path (MPEP), and its properties
govern the asymptotic behavior of the mean escape time.
In our earlier work [1,2] we suggested the possibility of a
focusing singularity: As one moves out along the MPEP,
transverse fluctuations may become increasingly less
stable, leading to a breakdown of stability before the
basin's boundary is reached. This hitherto unexplored
phenomenon has profound consequences for the particle's
escape behavior. It often occurs when the force field is
nonconservative, or in general when the particle's station-
ary probability distribution lacks detailed balance. Its
wide prevalence has not previously been recognized.

In this Letter we study a single example to demonstrate
the eA'ects of focusing singularities on exit phenomena.
We show that when such a singularity occurs, the MPEP
bifurcates (in the simplest case), leading to a type of bro-
ken symmetry. This transition aff'ects not only the pre-
factor of the mean first passage time (MFPT) to the
boundary, but also its exponential dependence on the
noise It may induc. e an unusual "skewed" (non-Gauss-
ian) limiting distribution of exit points on the boundary.

For simplicity we restrict ourselves to the case of an
overdamped classical point particle moving in two dimen-
sions and subject to additive isotropic white noise w(t).
In the overdamped case the deterministic forces acting on
the particle are described by a drift field u(x), so that

dx;(t) =u;(x(t))dt+e'I dvv;(t), i =1,2,
with e the noise strength. The corresponding Fokker-
Planck equation for the probability density is

p = (E/2) V p —V (pu) . (2)

u(x, y) =(x —x' —axy, —
p.y —x y) . (3)

This force field is conservative, i.e., is the negative gra-
dient of a potential, only if a=1. Nonetheless for any
p & 0 the field conforms to the assumptions, with xg =1.
The symmetry of u suggests that the MPEP, which must
connect (xs, O) and the saddle, lies along the x axis, and
for small a) 0 that is the case [21. The case when exit
occurs over an unstable fixed point [1] is also of interest;
additional phenomena may emerge there because focus-
ing on the separatrix (rather than the MPEP) can occur.
We defer that case to a later paper.

Away from both the stable point and the separatrix, p]
can be approximated by a WKB form [2,3]

p) (x,y) -K(x,y) exp[ —W(x,y)/el . (4)

K(x,y) satisfies a transport equation, and W'(x, y) an
eikonal (Hamilton-Jacobi) equation: H(x, VW) =0, with
H(x, p) = —,

'
p +u(x) p the Wentzell-Freidlin Hamil-

tonian [4]. So for any point (x,y) in the basin of attrac-
tion of (xs,O), W(x,y) will be the action of a zero-energy
classical trajectory, governed by this Hamiltonian, ex-
tending from (xs, O) to (x,y). In general, computation of
W(x,y) will require a minimization over the set of zero-
energy trajectories terminating at (x,y). MPEPs are ac-
cordingly the zero-energy trajectories from (xs,O) to

We shall employ the technique of matched asymptotic ex-
pansions described in Refs. [1,2]. We impose absorbing
boundary conditions on the "separatrix" (the boundary of
the basin) and study the behavior, as e 0, of the quasi-
stationary density p& (x,y), i.e., the slowest decaying
eigenmode of the Fokker-Planck operator. In the low-
noise limit, the properties of p] can be used to calculate
both the MFPT and the distribution of exit points [1].

We specialize to the case of a drift field with a stable
fixed point at (xs,O), whose basin of attraction is the en-
tire right-half plane. We assume symmetry about the x
axis, and that there is only one fixed point on the y axis:
a saddle point at (0,0). One such drift field is
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(0,0) of least action. The MPEP action is the exponen-
tial growth rate in the low-noise limit of the MFPT.

For nongradient drift fields u, it will be a common oc-
currence for two or more classical trajectories emanating
from (xg, O) to cross at some point. The set of points
reachable from (xz, O) via more than one zero-energy tra-
jectory is known as a caustic [5-7]. A focus or cusp is a
point from which a caustic emanates. Pictorial examples
are given in Refs. [2,7,8]. Except in Ref. [7], the caustics
occur far from fixed points, MPEPs, or separatrices and
have little effect on exit phenomena. However, they may
constitute regions of anomalous probability density, since
the WKB expansion breaks down there [6].

Our concern here is what happens when a focus ap-
pears on the MPEP itself, making the action 8' non-
unique at following points. Because the MPEP is initially
assumed to lie along the x axis, we study the validity of
the WKB approximation by introducing the expansion
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~(x,y) =fo(x)+f2(x)y'+o(y') . (5)

Physically, fz(x) ' e't is the transverse length scale
within which pi(x, y) is non-negligible. fz(x) satisfies a
nonlinear Riccati equation, described in Refs. [1,2].

We begin by considering the drift field of (3) when

p =1. For all a &4, we find numerically that f2 remains
positive and finite from x =1 to x =0, converging to 1 as
the origin is approached. (Because the origin is a fixed
point of u, it is formally reached in infinite time; see the
discussion in Ref. [2].) However, when a=4, fz con-
verges to zero, signaling the appearance of a transverse
"soft mode, " or instability. [This is accompanied by a
divergence of the prefactor K in (4).] For all a) 4, f2
reaches zero at positive x, and then plunges to —~ in

finite time (hence at strictly positive x). This signals the
presence of a singularity in 8'.

Figure I (dashed curves) displays this graphically. As
one moves from (1,0) toward the origin, the isoaction
curves become nonconvex at the point where fz goes neg-
ative. They become increasingly pinched near the x axis,
leading to a cusp singularity at (xF,O), where fz diverges.
Beyond this point W remains continuous, but is not con-
tinuously differentiabl across the x axis. It must be
computed by minimizing over trajectories, and different
trajectories are employed as y 0+ and y 0

Figure I (solid curves) makes this clear; it shows the
zero-energy classical trajectories, derived from the
Wentzell-Freidlin Hainiltonian by integrating Hamilton s
equations. As x is decreased from 1, off-axis trajectories
eventually reconverge on the axis, signaling that (xF,O) is
a focus. (This can be shown analytically; we omit the
proof. ) Every point (x,O) with x & xF, including the sad-
dle point at the origin, is reachable by three zero-energy
trajectories: the original x-axis MPEP, and two symme-
trically placed off-axis trajectories, with lesser (degen-
erate) actions.

The dependence of the focus xF on a, for the particular

FIG. 1. The curves (dashed) of constant action W'surround-

ing the stable point (xs, O) =(1,0), revealing the presence of a
singularity at (xF,O) = (0.3,0). Here p =1 and a=5. The tra-
jectories (solid) of zero energy emanating from (1,0), from
which the isoaction curves are computed. The two MPEPs are
the off-axis trajectories incident on (0,0).

drift field (3), is of interest. When a=4, xF=O. As a
increases, xF increases continuously from zero but never
reaches xg. When a=9, a new focus appears at the ori-

gin so that two foci occur on the x axis. Both move to
larger x as a increases. We have found numerically that
a new focus appears at a =n, n =2,3,4, . . . , but have

not explored in detail the zero-energy trajectories when

multiple foci occur. We restrict ourselves below to the
case of a single focus; i.e., if p =1 we take 4 & a & 9. If
pal the range of allowed values of a will differ.

Upon encountering a single focus, the MPEP bifur
cates. The path of minimum classical action —hence, the
MPEP —to any point (x,O) with x) xF from (xs, O)

remains the x axis. for x &xF, however, the former
MPEP (i.e., the x axis) remains an extremum of the ac-
tion but is no longer a local minimum [6]. There are two
new MPEPs, related by y —y. The symmetry has
been broken: The drift field and the equations of motion
are symmetric about the x axis, but each MPEP is not.

The new (curved) MPEPs, and their common action,
can be computed numerically. Since their action is the
exponential growth rate of the MFPT, the bifurcation
affects the low-noise asymptotic behavior. In Fig. 2 we

plot the action of the MPEP(s) between the stable and
saddle points (and therefore the asymptotic slope of the
MFPT vs I/e on a log-log plot) vs a for the case p = I in

the field (3). The onset of focusing at a=4 is evident.
The MFPT prefactor, one can show, diverges as a 4

To study the effects of focusing on the exit location dis-
tribution near the saddle, we set up a covariant formalism
for computing the WKB behavior of p~ along a curved
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0.55 homogeneous term of (7) vanish. We see that in these
limits we must solve an algebraic Riccati equation

~kl~/J+~ l~ kJ+~ J~ kg
ki k (9)
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FIG. 2. The action of the MPEP(s) for the drift field (3), as
a function of the parameter a when p 1. The MPEP extends
along the x axis only if a ~ 4, in which case no focus is present.

MPEP. The Hamilton-Jacobi equation is

0=0(x',p;) = ,' D"pp, +u'(x—)p;,

where p; =8W/|)x', an index is summed over when re-

peated, and the diffusion tensor D may be anisotropic
(but we consider only isotropic D here). We adopt the
notation p; J =8p;/t)x~; note that W,z =p; ~. By twice
differentiating the Hamilton-Jacobi equation we arrive at
the evolution equation for the second derivatives of W
along any zero-energy trajectory:

(7)

The overdot signifies a derivative with respect to transit
time.

Equation (7) describes the evolution of fluctuations in

all directions of the action along the MPEP, and repre-
sents a generalization of our previously derived nonlinear
Riccati equation [1,2] (to which it reduces when i =j=y
and the MPEP is along the x axis). Similarly, the covari-
ant generalization of our transport equation for K is [3]

K/K = —u'; —
2 D'JW, ;z

It is amusing to note that the diff'usion tensor plays a role
similar to that of a metric tensor, with additive noise
(constant D) corresponding to flat space, while multipli-
cative noise introduces an effective curvature [9].

In the vicinity of the stable point and saddle point
(t ~ —~,~ above) the momentum and therefore the in-

Equation (9) was also derived by Ludwig and Mangel in
the context of stochastic ecology [10]. The quasistation-
ary density in the far field of the "diffusive" length scale,
of size O(e'i ), surrounding each fixed point is according-
ly (up to a constant factor)

pi (x) -exp[ —(x —xo)C '(x —xo)/2e], (1())
where xo=(xs, O) or (0,0), and the inverse covariance
matrix C '=(C ');J =W;J is determined by the matrix
equation (9). C ' will be positive definite at the stable
point, but not at the saddle point.

Our procedure is to compute W(x) and K(x) by (nu-
merically) integrating the coupled equations (7) and (8)
along the curved MPEP. Close to the two fixed points,
we match to a quasistationary density which (a) is a solu-
tion of the Fokker-Planck equation and (b) matches with
(10) on the O(e'i ) length scale.

We find that the asymptotic behavior of exit phenome-
na falls into three qualitatively different categories de-
pending on whether the parameter p in the drift field is
greater than, less than, or equal to 1. This is because in
the vicinity of the saddle at the origin, u = (x, —py). In
this linearized field Hamilton's equations are easily
solved. The zero-energy trajectory which approaches the
origin from above follows a curve y~x"; hence the
MPEP asymptotically approaches the x axis for p & 1,
the y axis for p & 1, and comes in at a fixed angle for
p =1. [Cf. Fig. 1 (solid curves); all trajectories possess a
reflection symmetry about the x axis. l We consider these
cases.

p & 1: Near the saddle point at (0,0), this case resem-
bles the case of unbroken symmetry described in Ref. [2].
The action W(x,y) there can be approximated as
—x +py . The prefactor K tends to a nonzero constant.
Because the MPEPs are tangent to the x axis, matching
near the saddle remains the same as in the unbroken case.
Up to a constant factor, the quasistationary density p& on
the x,y=0(e' ) length scale will be

[exp(x /2e)y2( 2,x42/e)] exp( —py /e), (11)
where y2( —, , ) is the odd parabolic cylinder function [11]
of index —,'. This agrees with (10) in the far field, and
falls to zero as x 0 due to absorption of probability.
The exit location distribution will be asymptotically
Gaussian, with standard deviation e'~ 6/2p, as in the un-
broken case. We stress, however, that in this and the fol-
lowing two cases the exponential dependence of the
MFPT on the noise depends on proper identification of
the a-dependent off'-axis MPEPs, as does the prefactor.

p & 1: Here the MPEP approaches the origin asymp-
totically along the y axis, and the quasistationary density
and exit location distribution are spread over an anoma-
lously large region. Absorption takes place in a boundary
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layer of width O(e'I ), but because the MPEP ap-
proaches the origin along y ~ x" the appropriate length
scale in the y direction is y =0(e" ), not y=0(e' ).

This becomes clear when W(x,y) and K(x,y) are ap-
proximated near the origin. Integrating the evolution
equation (7) in the linear approximation yields

W(x,y) = —2x(lyl/A) ' "+(lyl/A)'", (12)

f(y ) ~ ly l

"" ' exp[ —(ly l/A ) ' "/e] . (13)

So on the O(e"I ) length scale to either side of the saddle,
the exit location has a bimodal (symmetrized) Weibull
distribution [13], with shape parameter 2/p. (Equiva-
lently, lyl

I" at exit time becomes exponentially distri
buted in the low-noise limit. ) This "skewing" phe-
nomenon (the particle tending to exit to one side of a sad-
dle, in a non-Gaussian way, rather than at the saddle it-
self) was discovered by Bobrovsky and Schuss [14], and
has been further investigated [15,16]. However, in our
simple model we are able to work out the limiting skewed
exit location distribution exactly. Of course the scaling
parameter A =A(a, tt) must be determined numerically.

p=l: As in the p&1 case, absorption occurs on the
x,y=O(e' ) length scale. But a new feature enters:
The inverse covariance matrix C ' is no longer uniquely
determined by (9). There is a free parameter, which

where A is the limit of the ratio y/x" along the MPEP as
it approaches the origin. Since p & 1, this action is of
higher order than quadratic in the displacements x,y.
Equivalently, the inverse covariance matrix C of (10)
vanishes Thi.s vanishing is always allowed [8';~—=0 is a
solution of the algebraic Riccati equation (9)] but it
occurs only when p & 1, leading to an anomalously large
length scale. The behavior of the prefactor K follows
from (8); along the MPEP, it is asymptotically propor-
tional to x ' ". This an unusual situation: The "frequen-
cy factor" [2,12] K(0,0) equals zero, yet all physical
quantities are nonzero and finite. The MFPT prefactor
turns out not to be anomalous; it is independent of e.

To compute the limiting exit location density and the
MFPT asymptotics, an expression for the quasistationary
density pi on the x=O(e''I ), y=O(e"I ) length scale is
needed. It is easily seen to be (up to a constant factor)

ly I

'""' '»nh[2x(ly I/» ""/e]exp[ —(ly I/»""/e],
which both solves the Fokker-Planck equation to leading
order, and matches up with the WKB approximation (4)
when 8'is given by (12) and K—x' " along the MPEP.
Since the exit location probability density is proportional
to t)„pi, i.e., t)pi/t)x(x =0), this gives an asymptotic exit
location distribution f(y)dy on the y axis, with

must be computed numerically by matching. The asymp-
totic expression for the exit location distribution involves
parabolic cylinder functions. We defer the details.

We have dealt only with a drift field symmetric about
an axis. Our results (excepting those relating to broken
symmetry) and methods are more general and apply to
asymmetric drift fields. So they should apply, in particu-
lar, to the asymmetric models (with anisotropic D) re-
viewed by Bobrovsky and Zeitouni [15]. For such models
the MPEP will typically be curved even in the absence of
focusing, and skewed exit distributions will often occur.
But the presence of a focus will still be signaled by a
breakdown in transverse fluctuations, at which point qual-
itatively new behavior will emerge. One prospect is to
study drift fields with a "symmetry parameter. " As this
is tuned through zero one might observe a jump in the
growth rate of the MFPT, much as a jump in magnetiza-
tion results when an applied field passes through zero.
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