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We study the nonequilibrium relaxation of the spherical spin-glass model with p-spin interactions
in the N ~ oo limit. We analytically solve the asymptotics of the magnetization and the correlation
and response functions for long but finite times. Even in the thermodynamic limit the system
exhibits "weak" (as well as "true") ergodicity breaking and aging eA'ects. We determine a functional
Parisi-like order parameter Pq(q) which plays a similar role for the dynamics to that played by the
usual function for the statics,

PACS numbers: 75.10.Nr, 02.50.—r, 05.40.+j, 64.60.Cn

Spin-glass dynamics has been a subject of continuous
interest in the past years. Experimentally, spin-glass dy-
namics below the critical temperature is characterized by
aging effects and very slow relaxations [1]. In long-range
mean-field models one knows that the phase space is bro-
ken into ergodic components [2]. Sompolinsky [3] de-
scribed a dynamics for these models allowing for barrier
penetration in very long times (diverging as N —+ oo).

In realistic systems, on the one hand mean field is not
exact and on the other hand one cannot perform an ex-
periment in infinite times, and one actually sees at most
"weak" ergodicity breaking.

Recently, Bouchaud has proposed a phenomenological
scenario with both "true" and weak ergodicity breaking
[4]. The question then arises as to if and how simple
long-range microscopic systems (for which mean field is
exact) can model these phenomena. To the best of our
knowledge, an analytic description is lacking.

The main purpose of this paper is to show, in a very
simple mean-field model, the asymptotics of which we
solve analytically that this is indeed so; in the thermody-
namic limit "true" and weak ergodicity breaking coexist,
and in a sense are complementary. To this end we solve
the dynamics of the p-spin spherical model (p ) 2) first
introduced in Ref. [5], setting N ~ oo from the outset,
starting from a given configuration, for long (but not di-
verging with N) times. Remarkably, such a simple model
exhibits a very similar behavior to that of realistic mod-
els (e.g. , 3D Edward-Anderson) in the autocorrelation
function for long times [6] and in simulations of aging
experiments [7].

It should be stressed that we are discussing a differ-
ent physical situation from the Sompolinsky dynamics,
which was analyzed in Ref. [8]. We do not have here any
time scale dependent on N or any other "regularization"
parameter. Surprisingly, one can establish formal con-
tact with Sompolinsky's equations by defining a variable
'T = ln(t'/t) which plays the role of the "time" there.
This will be further explained in a separate work in the
context of the Sherrington-Kirkpatrick (SK) model [9].

The spherical p-spin glass model is defined by the
Hamiltonian

Ji1" ip~ig ' ' ' ~ip

i1( (i~

The spin variables verify the spherical constraint

i s2(t) =
¹ The interaction strengths are inde-

pendent random variables with a Gaussian distribution
with zero mean and variance (J,, . . .,„)2 = p!/2¹ . The
overbar stands for the average over the couplings. Addi-
tional source terms (h„.. .,. time independent) have been
included; if r = 1 the usual coupling to a magnetic field
h, is recovered.

The relaxational dynamics is given by the Langevin
equation

r O, s, (t) = -P~
bH

r, determines the time scale and will be henceforth set
to 1. The second term on the right-hand side enforces
the spherical constraint while (,(t) is a Gaussian white
noise with zero mean and variance 2. The mean over
the thermal noise is hereafter represented by ( ). As
will be shown below, the dynamical equations plus the
spherical constraint impose z(t) = 1 —pPt(t) with F(t)
the energy per spin. We choose as initial configuration
s, (0) = 1 Vi, though any other choice is equivalent.

The mean-field sample-averaged dynamics for N —+

oo is entirely described by the evolution of the two-time
correlation and the linear response functions,
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The dynamical equations for them can be obtained from Eq. (2) through standard functional methods (see, e.g. ,

Ref. [10]),

BC(t, t') = —[1 —pP F(t)] C(t, t') + 2 G(t', t) + p, dt" C" '(t—
, t") G(t', t")

+ p (p —1) dt" G(t, t") C~-'(t, t") C(t", t'),

BG(t, t')
Bt

= —[1 —pP F(t)] G(t, t') + b(t —t') + p, (p —1) dt" G(t, t") C~-'(t, t") G(t", t'),

(3)

with p, = pP /2. These equations hold for all times t and
At equal times C(t, t) = 1, limi ~- G(t, t') = 1 and

lim~ ~~ BqC(t, t') = +1. F(t) can be identified as the
energy per spin multiplying Eq. (2) by s, (t'), averaging
over the noise and the couplings and taking the limit
t' ~ t. Purthermore, with the definition

r ) B(s,, (t) s,„(t))

dt" C"-'(t, t") G(t, t"),

Eq. (3) implies E(t) = —(P/2)I"(t).
Since we are interested in the nonequilibrium dynam-

ics, we solve these equations with the only assumption
of causality. We take t ) t' for definiteness and we fo-
cus on the lotto temperature phase. The system (3) and
(4) can be solved numerically step by step in a manner
reminiscent of Ref. [11].The numerical solution suggests
the following scenario for the asymptotic regime t )) 1
which we later confirm analytically. The time axis t' is
divided into three distinct zones with difI'erent behaviors.

(i) For 7—:t —t' finite, w/t ~ 0 asymptotically,
time homogeneity and the Huctuation-dissipation theo-
rern (FDT) hold; i.e. , GFD~(r) = —O(r) O~CFDT(7). For
large values of w (but still small compared to t) CFDT(&)
tends to a value q and GFDT(w) tends to zero.

(ii) If t' is such that (t —t')/t O(l), the relevant
(adimensional) independent variable turns out to be A—:
t'/t (0 & A & 1). In this sector the correlation and
rescaled response functions depend on A as C(t, t')

q C(A) and t G(t, t') = Q(A). Since q is the limiting value
of C(t, t') in the previous regime, C(l) = l.

(iii) Finite times t correspond to A = 0 in rescaled
variables. In particular, for t' = C we have the magneti-
zation m(t) = C(t, 0).

We now proceed to solve the resulting equations within
this asymptotic scenario.

(i) If t' is such that the system is in the FDT regime
Eq. (3) yields

+ 1 ~CpDT(~) + (p, + @pe~) [1 —Cr;DT(7-)]Br

with the asymptotic energy E (N.B."oo" is understood
as a limit taken after K ~ oo) given by

(1 —q") + pq"
—1

2
dA" g(A")C" (A")

(6)
The correlation decays to a value q determined by

1 —p/3E + p (1 —q" ') =- j.
(7)

This equation appears in the dynamics a ta Sompolinsky
of this model [8]. The solution for q as well as the decay
law require solving the coupled system (6) and (7) which
involves the previous history through the A integration.

(ii) The dynamic equations for the regime 0 & t'/t & 1
reduce to two coupled equations for C(A) and g(A) in
which, consistently, all times enter only through A:

0 = Q(A) I
—(1 —q) + p (1 —q) (p —1) q" C" (A)] + p, (p —1) q"

o=~(A) —(1 —q) '+I (1 —q)q' '~" '(A) +pq" '

+p(S —1)q" ' sgn(w" —A)-
dA" g(A") C" (A") C

Equation (8) in A = 1 admits the solution g(1) = 0 which implies g(A) = 0 and this is the high temperature
asyrnptotics In the lo. io temperature phase a nontrivial g(A) is possible provided the first square bracket in (8)
evaluated in A = 1 is zero; this fixes the value q. From Eq. (8) it also follows g(1) = xqC (1) (the prime denotes
derivative with respect to A) with x =—(p —2)(1 —q)/q. It is now easy to see that the system (8) and (9) with
P(A) = xqC'(A) simplifies to a single equation. With this ansatz the system of equations has the family of (exact)
solutions
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(10)

One can show that all asymptotic solutions are related
by a local symmetry in the asymptotic equations [12].
Nevertheless, solutions (10) are the only ones having a
nonconstant asymptotic limit of C(t, At) (0 & A ( 1) as
taboo.

In order to determine p a careful matching between
this solution and the ones associated with other sectors
has to be made. We do not do this here analytically.
Numerical solutions to the system (3) and (4) show that
p increases with T and decreases with p. For instance,
p=0.25 for @=5and T =0.2.

The solution found for the regime (ii) allows us to cal-
culate all the integrals (5) in the large t limit

In particular,

We now have everything that is required to solve the
FDT relaxation, Eqs. (6) and (7), which for this value of

imply a power law decay of correlations [8] to a value

q given by

(13)

Interestingly enough, the expressions just derived for the
energy S and q have a particular significance within the
Thouless-Anderson-Palmer (TAP) forrnalisrn, as we shall
see below.

(iii) Finally, we consider the finite t regime We a. l-

ready know that for large t correlations relax to zero;
we now study the asymptotics. Inserting the behavior
C(t, t') t c(t') in Eqs. (3) and (4) and using the pre-
vious results, we find o, = p; i.e. , the exponent for t is
the same as in the previous regime.

The dynamic transition takes place at the temperature
at which x = 1 in a manner that resembles the static tran-
sition [8, 13]; at that point the threshold energy coincides
with the paramagnetic energy.

The numerical solutions show that the asymptotic
regime is well established already for (adirnensional)
times t 100.

Let us now discuss in more detail some of the impli-
cations of this solution. For any waiting time t there
exists a sufficiently large r such that C(w+ t, t ) tends
to zero. After a (large) t, the correlation function has
a short transient after which it goes as q(t /w + t )r;
hence its decay rate is inversely proportional to t (an
aging efFect). We also have that for t large, the magneti-
zation falls to zero as t

In addition to a strong short-term memory, the system

possesses a weak, long-term memory, which is responsi-
ble for the observable aging effects in the susceptibility.
Consider, for example, the following procedure: we let
the system evolve in the absence of field during a large
time t at which we apply a small field during a further
time t. Using the previous results a short calculation
shows that the plot m(w + t ) vs In 7 has an inHection
point at w = (1/p)t . This is very much like the zero
field cooled procedure though we are starting here from
a fully magnetized initial state [1, 7].

We expect other models, such as the Potts glass (for
more than three components) and the p-spin Ising model
(for not too low temperatures), to have a similar dynam-
ics to the one presented here. The SK model instead has
a more complicated behavior [9].

I et us now turn to the physical interpretation of this
solution. We start by briefIy describing the structure of
the TAP free-energy landscape in terms of the magneti-
zations m, and q = (1/N) P,. m, [13].

The paramagnetic minimum q = 0 exists for all tem-
peratures. At fixed temperature T, below a certain tem-
perature T*, the TAP equations admit many other so-
lutions with q ) 0. These solutions have free energies
between f~;„(T) and an upper threshold f,h(T). The
value of q of each solution is larger the lower the free
energy, attaining its smallest value q&h(T) at the thresh-
old. Moreover, the ordering of the solutions in free en-
ergy does not change with temperature; i.e. , there is no
"chaoticity" with respect to temperature, and they nei-
ther merge nor coalesce.

Using standard methods [14] one can calculate the typ-
ical spectrum of the free-energy Hessian in a local mini-
mum, to find that it corresponds to a "shifted" semicircle
law. The lowest eigenvalue A;„ is greater than zero for
free energies below the threshold. Near the threshold
A;„drops to zero as

where f is the free energy of the solution considered. This
is unlike the SK model for which all minima are expected
to have A;„=0 [14].

For subthreshold free energies, the potential being
smooth and A;„&0, we have well-defined minima with
no "zero modes, " separated by O(N) barriers. In par-
ticular, this was shown within the replica approach for
the lowest minima that dominate the Gibbs measure [13].
Minima with free energies in a small neighborhood of ft, h

are separated by barriers of O(l) of all magnitudes.
A direct evaluation of the energy and q at the thresh-

old [13] gives for all temperatures (T ( T') precisely
expressions (12) and (13). Hence we have found that for
low temperatures the ofI'-equilibrium dynamics is domi-
nated by this threshold level. This is to be contrasted
with the equilibrium (Gibbs measure) situation in which
lower lying (subthreshold) states dominate [13]. Since
subthreshold states have A;„) 0, exponential decays
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would be expected within them, in contrast with the re-
sults found here.

We have hence the following picture for the tofu tem-
perature dynamics. The system erst relaxes towards the
threshold level. As discussed in the TAP approach, the
trapping times in subthreshold states are expected to di-
verge with ¹ However, the system does not go below the
threshold: shortly above this level it remains slowly tour-
ing an extended region of O(1) ruggedness with f fth.

This is seen from the behavior of C(r + t, t ) for
large t: at relatively small ~ the system relaxes in a
way that does not depend on t to a value q which one
can picture as the "width" of the channels. The system,
however, remains in any spatial neighborhood of size q
a small time compared with t . For larger r [O(t )] it
eventually drifts away, signaling the fact that no bona

fide states of size q are actually visited. However, the
trapping in a region of size q tends to be more stable
for increasing t, as reflected by the fact that the decay
rate of the correlation function beyond q for large w is
inversely proportional to t~.

In fi.nite N simulations one can expect a similar sce-
nario with the only difference being that the system is
now able to penetrate a certain (N-dependent) extent
below the threshold. Indeed, Monte Carlo simulations
with N = 256 support this picture [15].

In order to better characterize this c'ynamic process,
we consider the generating function Pd(q) of the general-
ized susceptibilities:

0(s,, (t) s,.(t))
gh, , . . .i h, =o-

dq' Pd, (q') q'" . (14)

If in this equation we take the reverse order of limits we
obtain the usual Parisi function P(q) [2]. In our case
P~(q) is given by [cf. Eqs. (5) and (ll)]

Pd (q') = z 6(q') + (1 —z) b (q' —q) .

Note that in this model Pd(q) g P(q).
In the low temperature phase, even if C(w+ t, t ) ~

0, P(q) g 6'(q), as happens in the high temperature
phase. This excludes the interpretation of the low tem-
perature dynamics as an equilibration in a state with

q=0.
A probabilistic interpretation of Pd(q) on the lines

of the static P(q) is immediate if one can assume that
the system achieves a Boltzmann distribution in a re-
stricted sector of phase space at each (large) time, i.e. ,

the Krarners approximation [16], the validity of which
remains to be proved in this context.

It may come as a surprise that analytic results can be
obtained at all in such nonequilibrium situations: the un-
derlying reason is the weakness of the long-term memory
of the system. We expect that whenever this is the case,
analytical results could be obtained.
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