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We present an alternative approach to statistical analysis of an intermittent ideal magnetohydro-
dynamics fluid in two dimensions, based on the hydrodynamic discrete vortex model applied to the El-
sasser variables. The model contains negative temperature states which predict the formation of mag-
netic islands, but also includes a natural limit under which the equilibrium states revert to the familiar
twin-vortex states predicted by hydrodynamic turbulence theories. Numerical dynamical calculations
yield equilibrium spectra in agreement with the theoretical predictions.

PACS nUmbers: 47.65.+a, 52.30.—q, 52.65.+z

Statistical theories of continuous fluids usually are
based on some discrete representation of the fluid. Even
though such fluids are not in thermodynamic equilibrium
at the molecular level, one can expect real systems to tend
towards the statistically favored states during time scales
for which the model is valid. For numerical simulation,
of course, some discretization of a continuous system is

always necessary.
Hydrodynamic turbulence has been discretized by two

methods: a truncated Fourier representation, and a point
vortex representation. An analytic statistical Fourier
analysis has already been applied to two-dimensional
magnetohydrodynamics (MHD) [1]. In this Letter, we
show that a point-vortex discretization like that used in

hydrodynamics (or the equivalent guiding-center plasma
[2]) is also possible for 2D MHD, and we give results of
statistical analysis as well as direct numerical simulation
of the vortex system.

Why is such an approach worth taking~ It has been
asserted [3] that difl'erent approaches to discretization of
functional integrations cannot in general be expected to
yield equivalent results. Indeed, in the hydrodynamic
studies, the two diflerent discretization approaches, while
both making similar qualitative predictions about a cas-
cade of energy to low wave numbers, do not yield the
same results [4]. A neutral 2D fluid with small dissipa-
tion is known to form intermediate-scale vorticity distri-
butions, or coherent structures [5], which dominate the
nonlinear evolution. Statistical theories based on inviscid
equations [6,7] predict evolutionary tendencies suggestive
of such structures, although they cannot complete the ful-
ly dissipative formation process. Vortices have neverthe-
less been taken as a starting point for a large body of
work (Refs. [8-12] and many others). The end states
predicted by such models have been observed in direct
numerical simulation of the primitive fluid equations
[13],and the dynamical approach, to the end state is well
described by a modified vortex model [14]. These
successes encourage the search for an analogous approach
in 2D MHD. Computationally, discrete-vortex models

can qualitatively reproduce the behavior of the primitive
fluid equations at a lower cost than a spectral or grid
point code [15], and allow the possibility of modeling
more general large-scale filamentary structures [16,17].
Taking an analogous approach to M HD simulations
could lead to similarly efticient numerical models of mag-
netic turbulence.

There is mounting observational evidence of intermit-
tent plasma structures occurring in high-P astrophysical
plasmas [18]. A high-P plasma, in which the fluid pres-
sure dominates the magnetic pressure, seems likely to
form coherent structures in both vorticity and current,
and singularities have in fact been predicted in 2D MHD
[19], while high-resolution 2D MHD simulations have
displayed strongly intermittent states [20]. This evidence
adds to our confidence that a treatment of plasma tur-
bulence based on coherent structures will prove to be ap-
propriate.

Long ago, Elsasser [21] pointed out that the basic
equations of ideal MHD for an incompressible fluid can
be written in the form

flu +(w V)u= —Vrl, u=t+B,

+ (u V) w = —Vtl, w =v —B,

V u=V w=0 g=p+ —8]

Q"=Vxu, u =VxA", 0 =Vxw, w=VxA", (2)

and choose a gauge in which V A"=V A"=0. We will
use a species superscript to indicate u or ~, or omit any
superscript to indicate both possibilities generically.

In a neutral fluid, the vorticity is conservatively advect-
ed through the fluid. We seek an analogous result for our
0's by taking the curl of Eq. (1). The divergence of Eq.
(1) gives an equation for the pressure, which can be

Velocities are measured in units of an arbitrary constant
vo, and the magnetic field is measured in units of
Bp= J4trpvp. Let us also define functions 0 and A by
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the curl of the momentum equation becomes

D"o +D o"=0, (4)

while the curl of the induction equation may be written

D"0"—D"0"=2S,
in which there is a source term

(5)

S = 0 "x0 "+0" Vu —0" Vw

+ —,
' [V'(u && w) —(V'u) x w —u && (V'w) ] .

In two dimensions, 0 = Qz and A =Az, and most of the
terms in S vanish identically. What remains can be ex-
pressed in terms of the strain rates, a f = (8„—8» )A,
a2-=8„8 &', and a' -=af +a2:

(7)

An upper bound for the magnitude of S is therefore

)S[ ~ a"a

Let our plasma consist of a number of u and w fila-
ments with positions jx,'j and intensities ja,'j such that
the 0's then take the form

0'=g a,'B(x —x,') . (9)

The variables [x,'j and [a,'j fully determine the fields u,
w, and S through Eqs. (9), (2), and (7). Equations (4)
and (5) are solved by the motion of the filaments if

dx'
2

dQ'
=w(x; ), =S(x;"),

dt
' '

dt
(IO)

dx; d

dt
' '

dt
=8(K;"), = —S(x,") .

The induction of current represented by the source term
is manifested by a simultaneous change (in opposite
directions) in the strength of the u and w filaments. The
fact that u and w filaments are not necessarily coincident
and that filaments are not guaranteed to be present wher-
ever S is nonzero makes this discretization incomplete but
probably adequate for large number densities of fila-
ments.

The u or w field of an axisymmetric filament falls oA

as I/r, whereas the rate of strain a' goes like I jr . The
magnitude of S, therefore, is smaller than the advective
term by at least the ratio of a filament's size to the typical
filament separation. In the present treatment of zero-
sized filaments, we will neglect S entirely, so that the fila-
ment strengths a,' are constant in time. In our model,
then, the sum (or difference) of vorticity and current is

solved once the fields are known. Defining the differential
operators

D"V:6,V——V && (u x V),
(3)

D"V—=a, V —Vx (wx V),

u w= 2"0"= 2"0"=H.
4 4

The Hamiltonian is the quantity fv —B . By neglect-

ing S, we are doing work by maintaining a constant
current along each filament. Thus, the interaction energy
of two current filaments is —fB, and the total interac-
tion energy of the system is fv —8, or H. It is perhaps
more convenient, however, to view H as a parameter that
measures whether the fluid is kinetically or magnetically
dominated. Unlike the usual plasma P, which measures
the ratio of magnetic energy to microscopic, thermal en-

ergy, H measures the diA'erence between the magnetic en-

ergy and the kinetic energy due to macroscopic fluid

motion. We denote the constant, numerical value of the
Hamiltonian by E.

There is a symmetry about E =0. The sign of E can be
changed by reversing the sign of either of the two fields.
The transformation w —w implies v B and B v,
while u —u implies v —B and 8 —v. Thus, all

results obtained for E & 0 are applicable for E &0 with

v B . This symmetry was confirmed in our numerical
simulations.

Taking a microcanonical ensemble, the structure func-
tion may be calculated explicitly, as was done for a
guiding-center plasma [22],

(l2)

@(E,V,N ) = B(F. —H( jx;j ) ) +dx;

dke' J+dp„dp„+ O(N ') .
1

2x " k

We have invoked the "random-phase approximation"
[23] by changing the variables of integration from the
filament positions x; to the Fourier-transformed filament
"charge" densities, p„(k) and p„(k). Ignoring small-
scale correlations between the filament positions gives a
Jacobian, J, which is simply a product of Gaussians in the

p s.

1713

pointwise conservatively advected, with the advecting
field being w for a u filament and u for a w filament. We
will later present a more extensive treatment that in-

cludes S&0 and three-dimensional solutions. The former
supports the S=0 approximation for many aspects of the
statistical behavior.

Let us suppose we have, in a box of volume V, N total
filaments, N„of type u and N„of type w, in which the u's

have strength ~ a" and w's have strength + a . This
system of filaments is Hamiltonian with canonical vari-
ables (xf, ~af~yf). The (x;,y;) are periodic Cartesian
coordinates of the ith filament. The Hamiltonian is

H(xi, . . . , Kjv) = —g g a;a, G(x;~x, ), (ll)
i 6uj6w

where V G(x~x') =8(x —x'), with appropriate boundary
conditions. In an infinite domain, G(x~x') ~in(x —x'~.

Note also that
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The result is that

1 z2e= dze'"+ 1+
2x fl~ fly Z JC

2 4

in terms of dimensionless quantities

(i 4)

JN, N~a, a~
VN

E= E
JN„N„a„a„

(is)

where K' =n„+n~ is the dimensionless wave number, and
k =(4z /V)x . The product in the integrand runs over
all n„,n~ ~ 0 except n„=n~ =0, and the integral can be
reduced to an infinite sum over residues, which occur
along the imaginary axis at z = ~ibex. Unlike the hydro-
dynamic structure function, 4 is symmetric with respect

to E, and differs from a Gaussian distribution, approach-
-xr;„IEI

ing e '" as E + ~. Figure 1 shows @, from a nu-
merical evaluation of Eq. (14), along with a Gaussian for
comparison. Both are normalized to integrate to l. Also
shown are histogram data of E from an ensemble of vor-
tex systems with fixed filament intensities and random
filament positions. The small number of events in the
tails of the distribution of E cause some scatter in the
data, but the data conform to the calculated structure
function in the center and clearly deviate from a Gauss-
ian in the tail. Tokamak experiments have measured de-
viations from Gaussian probability distributions, which
have been taken as indicators of intermittency in the tur-
bulent edge plasma [24].

One may also calculate the filament density spectra,

&ip„(x)i'& &ip„(x)i'& 1 i,,gdz etzE
N a2 N a2 V2 2 ~J ~2]Ic4

(16)

and the cross-correlation spectrum,

(p„(x)p„*(x))

j'N„N„a„a„
1 1

~ —iz - z2
dz eizE

V 2g@ Z2x. 4 (i7)

Ensemble-averaged spectra of vorticity, co =z V x v,
current, J=—z Vx 8, and cross helicity, v. B, can be calcu-
lated by the following relations:

(co'(x)) = —,
' (ip„(x)+p„(x)i'),

(J (x)) = —,
' (~p„(x) —p„(x)

~ ),
&v(x) B(x)) = x '-,' [& i p„(x) i

'& —
& i p (x) i

'&] .

We let N„a„=N„a„=Na, so that (v 8) =0. Regard-
less of E, (ro (tc ee)) =(J (x ee)) =

& Na /V . The
longest wavelength modes have asymptotic behaviors
(ro (x~;„)) ~EINa /V, (J (x~;„))=0.26Na /V for

1 I I I1

E +ee, and (co (x~;„))=0.26Na /V, (J (x;„))
(E~Na /V for E —ee. The discrete vortex model,

thus, predicts a large-scale vortex dipole when E)) 1, and
a large-scale magnetic dipole when E « —l.

Figure 2 shows the spectra of co and J2, with E =2.
The solid and dashed lines are calculated from numeri-
cal integrations of Eqs. (16), (17), and (14). The data
points are time averages from a dynamical simulation of
Eqs. (9) and (10) using a two-dimensional guiding-center
particle-in-center algorithm [25], modified to account for
two species of filaments. The peak of (ro ) at x;„is indi-
cative of the large-scale vortex dipole formed. Figure 3
shows the values of the lowest-wave-number modes,
(co (x~;„)) and (J (x~;„)&, for positive values of E, com-
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FIG. 1. Structure function @, showing phase-space probabili-
ty density as a function of the energy E. Solid line is computed
from Eq. (14), and data points are measured histogram fre-
quencies from a set of random configurations. The dotted line
is a normalized Gaussian chosen to match at F. =0, shown for
comparison,
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FIG. 2. (J ) and (m ) spectra for E=2. Data points are time
averaged from a dynamical simulation. Solid and dashed lines
are spectra predicted from the microcanonical ensemble.
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ideal invariants, and three which survive Fourier trunca-
tion, care must be taken in using these as a basis for a
statistical analysis. For weak magnetic fields, the enstro-
phy will also be nearly invariant, and dissipation ulti-
mately destroys all invariants in any case. While we also
expect that the effects of neglecting the sources in Eq. (5)
will make themselves felt eventually, we have hope that a
filamentary representation of MHD, by avoiding explicit
reference to inviscid invariants, can avoid some of the
above di%culties, particularly those arising from a small
magnetic field.

This work was supported by the National Science
Foundation and the U.S. Department of Energy.
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FIG. 3. Values of the lowest-wave-number mode vs E from
dynamical runs and theoretical predictions.

paring a series of dynamical runs with the theoretical pre-
dictions. The asymptotic behaviors (co (ten;„)) ~E and
(J (tcm;„)) const are clearly demonstrated. The corre-
sponding behavior (co ) (J ) for E~ —E was con-
firmed, although these results are not shown here.

The above behavior of (J(k;„)) for B ))t is con-
sistent with results from the truncated Fourier canonical
ensemble analysis of [ll. There, fv —B is identified as
a parameter whose sign determines whether the magnetic
field will peak at long wavelengths, and this peak is pro-
portional to the total energy, as we have found. The
spectra differ at large k, however, with the truncated
Fourier model predicting (J (k ~)) ~ k .

In the small magnetic field limit, the truncated Fourier
and discrete vortex models diff'er more profoundly. In a
neutral fluid, when the kinetic energy is large, Fourier
and vortex models both predict a large-scale vortex di-
pole, with an enstrophy spectrum (co ) that has a sharp
peak at km;„, whose strength is proportional to the kinetic
energy [4,22]. This behavior is represented in the F. » I

state of our model, but the truncated Fourier analysis of
MHD predicts no such peak, i.e., (co (k))cek in all

cases (when (v B)=0). The reason is that the Fourier
statistics are based on the MHD invariants, but as the
magnetic field shrinks to zero, the invariants of the sys-
tem change. The total energy becomes the kinetic energy
normally, but the mean squared magnetic potential goes
to zero. The enstrophy, meanwhile, changes at a rate
proportional to the magnetic field strength. As the mag-
netic energy vanishes, any canonical ensemble treatment
(like the truncated Fourier representation) should include
the enstrophy as an invariant. The omission of the en-
strophy changes the spectrum from one with negative
temperatures and large-scale structure to a flat equiparti-
tion [4].

While two-dimensional MHD possesses an infinity of
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