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We present the theory of two-dimensional, clean quantum antiferromagnets with a small, positive,
zero temperature (T') stiffness p,, but with the ratio kgT'/p, arbitrary. Universal scaling forms for
the uniform susceptibility (xu), correlation length (£), and NMR relaxation rate (1/7}) are proposed
and computed in a 1/N expansion and by Monte Carlo simulations. For large kgT/ps, xu(T)/T
and T€(T) asymptote to universal values, while 1/7(T") is nearly T independent. We find good
quantitative agreement with experiments and some numerical studies on Laz—_sSrsCuQOy.

PACS numbers: 75.10.Jm

The last few years have seen extensive theoreti-
cal and experimental studies of two-dimensional quan-
tum Heisenberg antiferromagnets, with particular at-
tention to the antiferromagnetism in the cuprate com-
pounds [1,2]. On the theoretical side, most notable has
been the work of Chakravarty, Halperin, and Nelson [3],
who focused mainly on the low temperature (7") prop-
erties of systems with well established long-range Néel
order at T = 0; their most detailed results were in a
regime in which the fully renormalized, T' = 0, spin stiff-
ness ps was not too small, while the temperature satisfied
kT <« ps. Under these conditions, the antiferromag-
net could be treated as a classical system, with all ef-
fects of quantum fluctuations being absorbed into renor-
malization of the couplings. At low 7', there has been
good agreement between their results and experiments
on LayCuOy4 [3]. However, the experimental results at
higher T remain poorly understood—there are clear de-
viations from the classical behavior and it is expected
that quantum fluctuations will play a more fundamen-
tal role. Besides, in the lightly doped cuprates, p, is
likely to be quite small, thus decreasing the T range over
which the renormalized-classical (RC) behavior will hold.
Finally, there are experimental realizations of frustrated
two-dimensional Heisenberg antiferromagnets [4], which,
in all likelihood, have a very small value of p,.

Our understanding of the experiments would clearly be
improved by precise theoretical predictions in low tem-
perature regimes other than kT < ps. To this end,
we discuss here some universal properties of clean two-
dimensional quantum Heisenberg antiferromagnets with
nearest-neighbor exchange J, in which the stiffness p; is
“small,” but nonzero. We will study the physics when
0 < ps € J, kpT <« J, but the ratio kgT/p, is al-
lowed to be arbitrary. The system is then controlled
by renormalization-group flows near the 7' = 0 quantum
fixed point separating the Néel-ordered and quantum-
disordered phases. Our main new result will be that,
in this regime, the absolute values of the entire long-
wavelength, low-frequency, uniform and staggered spin
susceptibilities are completely universal functions of just
three thermodynamic parameters: p;, ¢, and the ordered
staggered moment Ng. The universal functions depend

only on the symmetry of the order parameter, and sensi-
tivity to all lattice-scale physics arises only through the
values of p,, ¢, and Ng. For small kgT/p, (the RC
region), the T dependence of our results is similar to
those already obtained in Ref. [3]. For large kgT/ps [the
quantum-critical (QC) region of Ref. [3]], most of our re-
sults are new. We will show that they are consistent with
the available experimental [5-7] and some of the numer-
ical [8-10] data on the uniform susceptibility, correlation
length, and NMR relaxation rate for undoped and weakly
doped Lag_sSrsCuO4. We thus argue that the use of a
small p; point of view is not unreasonable even for the
pure square lattice, spin-1/2, Heisenberg antiferromag-
net; while ordered at T = 0, this system is evidently
close to the point where long-range order vanishes.

Our results follow from some very general properties of
the T' = 0 quantum fixed point separating the magnetic-
ordered and quantum-disordered phases. These proper-
ties are expected to be valid in both undoped and doped
antiferromagnets, though not in the presence of random-
ness [11,12]. They are as follows: (i) The fixed point is
described by a continuum (2+1)-dimensional field theory
which is Lorentz invariant, and the spin-wave velocity, c,
remains nonsingular through the phase transition. (ii) At
T = 0, on the magnetic-ordered side, there is a Josephson
correlation length £; which diverges at the quantum fixed
point; near this fixed point p; equals AcO/&;, where ©
is a universal number [13,14]. (iii) Turning on a small T
places the critical field theory in a “slab” geometry which
is infinite in the two spatial directions, but of finite length
L, = he/kpT, in the imaginary time (7) direction—its
consequences therefore follow from finite-size scaling [3].

Uniform susceptibility, x,.—We first consider the re-
sponse of the antiferromagnet to a static, spatially uni-
form, external magnetic field (the extension to a field at
finite wave vector k or frequency w will be omitted here
for brevity). Such a field causes a uniform precession of
all the spins, which can be removed by transforming to
a rotating reference frame at the price of a twist in the
boundary conditions along the 7 direction [15]. The re-
sponse of the system to this twisted boundary condition
defines a stiffness, p,, which equals x,. However, the
fixed point is Lorentz invariant, and hence x, has the
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same scaling properties as ps. Application of finite-size
scaling [16] then yields the following T° dependence for
Xua

9B _ NkpT

2
xll) = (2) ksT Q) , z=52=, ()

where gupg/h is the gyromagnetic ratio, N is the number
of components of the order parameter, and Qg(z) is a
ungversal function. Note z « £;/L., the length ratio ex-
pected in finite-size scaling functions. We have computed
Qq(z) in a 1/N expansion for the O(NN) nonlinear sigma
model in 2+1 dimensions [17]. The O(3) model describes
the low-energy dynamics of two-dimensional Heisenberg
antiferromagnets on a square lattice. The antiferromag-
net also carries Berry phases, not present in the o model,
but these have been argued to be irrelevant at the quan-
tum fixed point [11]. At N = oo, the scaling function
Qo (x) can easily be calculated:

- 1 V4 + e=2/x e~1/z
Q5=(z) = = —Tr:_—_—i—/x—- arcsinh < ) . (2)
Of particular interest is the behavior of x, for large
z. The function Qg=w(m) is analytic at £ = oo, and
the general principles of finite-size scaling [16] suggest
that this remains true at finite N. Thus we expect that
Qo(x — 00) = Qo + O /x + -+ with Qq, 1 univer-
sal numbers. Combined with (1), this implies that a
plot of x,(T") vs T will be a straight line at large T'/p,
with universal slope and intercept, whose values are re-
lated to Qo and i, respectively. At N = oo we ob-
tain from (2) Qe = (v/5/7) In[(v/5 4+ 1)/2] ~ 0.3425 and
Q1 = 404 /5. We have computed the first 1/N cor-
rection to Q4 and indeed found that it is a universal,
regularization-independent number. We obtained

Qo(z = 00) = Qoo = 0.3425(1 — 0.619/N +---).  (3)

We have also performed Monte Carlo simulations of a
classical D = 3 Heisenberg ferromagnet on a cubic lat-
tice, whose phase transition is expected to be in the same
universality class as the O(3) sigma model. We used a
lattice of size L x L x L, (L < 30, L, < 10) at its known
critical coupling [18] and computed p,. It then follows
that Qo = limy__, o limy_,oo Ly p,, where the order of
limits is crucial. The result was Qo = 0.25 & 0.04, in
good agreement with the 1/N result at N = 3. Finally,
there is an analogy between 0, and another universal
number discussed recently—the universal conductivity,
0@, at the superfluid-insulator transition [14,19].

We turn next to small z. The N = oo result (2)
gives the leading term Qg(z — 0) = 1/mz, which im-
plies x,(T — 0) = 2¢92u%ps/h?c*N = (2/N)x., where
X1 is the transverse susceptibility. This is in fact equal
to the exact result expected from rotational averaging
of an ordered quantum O(N) sigma model [3,20]—we
have indeed found no corrections in the 1/N expansion
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at T = 0. Furthermore, it was shown in Ref. [3] that
there are no T-dependent corrections to the isotropic x.
in a classical, d = 2, lattice rotor model. In contrast,
for our quantum O(N) sigma model, the N = oo result
contains a term linear in T" at small 7". In the 1/N expan-
sion of this quantum model, the classical contributions to
various observables appear as Inz/N terms; however, as
expected, all Inz/N contributions to x, were found to
cancel among each other. We then calculated the regular
1/N corrections and found

Qozx - 0)=1/mrc+Tn+---, (4)

where I'y = (N — 2) /7N is a universal number.
Correlation length, £&.—The scaling dimension of £ is
—1, and the finite-size scaling result for £(T") is therefore

§71(T) = (kpT/he) Xq(), ()

where Xg(z) is a universal function. As for x,, there
are no nonuniversal factors on the right-hand side. The
numerical results for X depend on the precise definition
chosen for &: we follow Ref. [3] and define the correlation
length from the long distance e~"/¢ decay of the equal
time order parameter correlation function. Equivalently,
one can define £ as k™!, where x is the location of the
pole of the staggered structure factor S(k) closest to the
real k axis. At N = oo, we have simply

X5=°°(z) = 2arcsinh[(1/2)e1/7] . (6)

For large z, the properties of £ ! are similar to those of
Xu- The function X¢(x) is expected to be analytic at z =
oo with Xg(z — ) = Xoo+X1/z+--+; aplot of E~1(T)
vs T will be a straight line at large 7" with a universal
slope and intercept, whose values are related to X, and
X1, respectively. We have also computed the 1/N correc-
tion to X and found X, = 0.962(1 + 0.237/N). From
(6) it follows that X; = —0.894 + O(1/N).

For small z, the N = oo result (6) gives Xg(z —
0) = e~1/* However, unlike Xu, the RC spin fluctuations
make a strong contribution to &, thus requiring careful
consideration of the Inz/N terms in the 1/N expansion.
We identified terms to order (Inz/N)?, exponentiated
them, and found

Xg(z — 0) = Yyg Y/ N=D =N/ (N=-2)z (7)

where Yy = 1+(31n2—1+C)/N+O(1/N?) is a universal
number (C is the Euler constant, C = 0.5772). The T
dependence of this result agrees with that of Ref. [3].
The prefactor was also obtained by another method in
Ref. [21].

Note that Ref. [3] obtained an interpolation formula for
£ in an € expansion which, when reexpressed in terms of
x, becomes £ ~ arcsinh(§ e_N/(N‘Z)x). Our approach
shows that the N/(N — 2) factor in the exponent is
present only at small z, where the perturbative series
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is logarithmic.

NMR relazation rate, 1/T;.—The relaxation of nu-
clear spins coupled to the antiferromagnetic order pa-
rameter (e.g., Cu nuclear spins in LapCuQOy) is given by
1Ti(T) = limy_o242(kgT/hw) [(d?k/4m?)x" (k,w),
where x” (k,w) is the imaginary part of the dynamic stag-
gered susceptibility of the underlying quantum antiferro-
magnet, and A, is the bare hyperfine coupling. This
determines the scaling dimension of 1/7) at the quan-
tum fixed point to be 7, the critical exponent associ-
ated with spin correlations at criticality: n = 8/37%2N —
512/277*N?% 4 ... in a 1/N expansion [22] and the best
current value at N = 3 is n =~ 0.028 [18]. The finite-size
scaling form for 1/77 can be shown to be

1/Ty(T) = (2A7 NG /ps)x" Ro(z) 8)
where Rq(z) is a completely universal function. Note the
complete absence of nonuniversal normalization factors
in (8).

We now consider the limiting behavior of Rg(x) for
large and small z. As before, at large z, Rg(z — o0) =
R, a positive constant; the small value of 7 then implies
that 1/T% is essentially T independent at high T. To
leading order in 1/N, we estimate Ry from the result
for x”(k,w < T) in Ref. [11] to be Ry = 0.66/N. Note
the factor of 1/N — x”(k,w) is finite at w — 0 only due to
the self-energy corrections. At small z, dynamical scaling
[3,23] predicts that Rg(z) o« £(z). The 1/N expansion
is again singular when z <« 1 and we will not discuss it
here.

Comparison with numerical and experimental
results.—We have so far presented general scaling forms
for the magnetic properties of a two-dimensional quan-
tum antiferromagnet which has p, < J. Explicit scaling
functions can be calculated at N = oo, and examination
of 1/N corrections has been limited to those for Q.
These corrections were, however, quite small, and we ex-
pect, in general, that 1/N expansion is robust and numer-
ically quite accurate for large values of z. On the other
hand, at small z, the 1/N expansion is logarithmically
singular, and eventually changes the leading singularity
in some of the scaling functions at z = 0; the final low-T
behavior is the same as that in the RC scaling theory of
Ref. [3]. The crossover between small and large x should
occur for z around unity. Thus for z > 1 (but such
that the long-wavelength description is still valid), it is
quite likely that 1/N expansion will describe the exper-
imental data better than the RC theory, which, strictly
speaking, is valid only for z <« 1. In a square lattice,
nearest-neighbor, S = 1/2 Heisenberg antiferromagnet,
2mps & 1.13J (Ref [24]) and we therefore expect that our
large-N, large x results should work for z > 1, i.e., for
kT > 0.35J.

The absence of any RC corrections to x, makes it
an ideal candidate for testing our theory; the 1/N ex-
pansion should become accurate even at fairly small
values of z. We start with the numerical results for

Xu(T) on the square lattice S = 1/2 antiferromagnet.
There have been high-T' series expansions [8], quantum
Monte Carlo calculations [9], and finite cluster calcu-
lations [10]. Their results all show that x,(T) obeys
a Curie-Weiss law at high T, reaches a maximum at
kT ~ J, and then falls to a finite value at T" = 0,
which is rather close to the rotationally averaged 1/S
result (B/gup)?x.(T = 0) =~ 0.04/Ja?, where a is the
lattice spacing. For 0.35J < T < 0.55J, both series ex-
pansions [8] and Monte Carlo [9] calculations report a
linear T dependence of x,(7T") (Fig. 1). Also plotted
is our theoretical prediction of Eqgs. (2) and (3) which,
over the range of x values used in the figure, is well ap-
proximated by (A/gug)?[Ja?x.(T)] = 0.037z(1 + o/x),
a = 0.8+ O(1/N). This is remarkably close to the best
fit to the data of Ref. [9] which gives 0.037x(1+0.775/x).
Moreover, the theoretical z-dependent term in the RC re-
gion is 0.014z, in clear disagreement with the numerical
data at T' > 0.35J.

We consider next measurements of x,(7") in weakly
doped Las_sSrsCuQOy4. The interpretation of the exper-
imental data even above the zero-doping T requires
caution because one has to subtract Van-Vleck, core,
and diamagnetic contributions from the measured x,,(T’).
Nevertheless, after subtraction was carried out, it was
found [5,25] that at small doping concentration the sus-
ceptibility is linear in T'; the slope of (A/gup)?[Ja?x.(T)]
vs x is about 0.043, which is very close to our result
(0.037). Thus for Laj 955r9.05CuOy, X scales with T in
the temperature interval 100 & 400 K (note that for 5%
doping, ps is already very small and the QC region is
shifted to lower T).

Now the 3Cu spin-lattice relaxation rate, 1/7}, in
LapCuOy4. At low T (z small), the theory of Ref. [23] pre-
dicts that 1/Ty o 23/2e~3/%; this is in very good agree-
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FIG. 1. Monte Carlo [9] (squares) and theoretical (line) re-
sults for the uniform susceptibility %, = [3J(ak/gus)?]xu
of a square lattice spin-1/2 Heisenberg antiferromagnet
(a is the lattice spacing). The experimental results for
Lai.95510.05CuQ4 are very close to the Monte Carlo data [5].
There are no adjustable parameters in the theoretical result
(1). Over the range of z plotted, the function Qg(x) is very
close to its large-z behavior Qg(z) =~ Qoo (1 + 0.8/z). We
used this large-z result with Qo from (3) at N = 3. The the-
oretical and experimental slopes agree remarkably well. The
good agreement in the intercept is somewhat surprising as its
theoretical value (= 0.8) is known only at N = oo.
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ment with recent observations [7]. At larger T, Ref. [23]
predicted a crossover to a QC behavior. Complement-
ing this, the present theory predicts that 1/7} becomes
nearly T independent for x > 1 or T' > 0.35J. This
has in fact already been observed in series expansions
(8] and finite cluster calculations [10] for the square lat-
tice antiferromagnet. More importantly, a flattening in
1/T1(T) has recently been observed in the experiments
on LasCuOy4 [7]. We also calculated, from our results
above, the limiting large-T value of 1/7; for the same
values of parameters as were used in the low-T fit [23]
and found 1/T} =~ 3.3 x 103 sec™!; this is in good agree-
ment with the experimental result 1/7} ~ 2.7x103 sec™!.
Furthermore, the experimental 1" range over which 1/T}
is nearly T independent increases upon doping. This is
consistent with our results because p; is expected to de-
crease with doping, thus pushing the system into larger
z for the same T'.

Finally, the correlation length £. Detailed measure-
ments of £(T) in LapCuO4 have been performed at low
T, where the system is in the RC region [6]. At the high-
est experimentally accessible T (= 560 K for J = 1460
K), our result £~! = 0.023 A~! is not far from the ex-
perimental value of £~ = 0.03 £+ 0.004 A~1. At finite
doping, we expect the crossover between two regimes to
occur at lower T'; QC behavior should therefore be ob-
servable at T" even below 500 K. We fitted the data of [6]
at z = 0.04 by Eq. (6) and found satisfactory agreement
with the data over the T range between 300 and 550 K.
At lower T, the experimental results on the dynamical
local susceptibility [6,11] clearly show that the effects of
randomness are relevant. We also compared our results
with the numerical data for ¢ at higher T' [9,26]. For
T > 0.35J these data obey quite well €71 o< z(1 — /1)
where 7 is close to 1. However, the overall factor in £~1 in
the fit is close to twice our N = oo result. This discrep-
ancy is probably due to the fact that the strong singular
corrections in X¢g(z) at small x cause the crossover from
small- to large-z behavior to occur at a larger . Note,
however, that the Monte Carlo calculations in the QC
region [27] yield the value of X, = 1.25, which is close
to our result to order 1/N at N = 3 of X, = 1.038.

To conclude, we have considered in this paper the mag-
netic properties of two-dimensional quantum antiferro-
magnets. We focused attention on the T range where the
classical low-T" description is no longer valid and the be-
havior of observables is governed by the renormalization-
group flows near the 7' = 0 quantum fixed point. A
comparison with the experimental data for the uniform
susceptibility and 83Cu spin-lattice relaxation rate shows
that the intermediate behavior has been observed in the
range 0.35J < T < 0.55J in LayCuQOy.
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