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Relativistic Disks as Sources of the Kerr Metric
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Many spacetimes are known which should represent gravitational fields outside rotating sources, but
for which no satisfactory sources have been found. We indicate that these spacetimes can arise as the
metrics of counterrotating thin disks of finite mass, consisting of two streams of collisionless particles,
circulating in opposite directions with diAerent velocities. We show how such disks can act as exact
sources of all types of the Kerr metric. In their central regions they can produce ergoregions, the veloci-
ties can approach that of light, and the redshifts can become arbitrarily large.
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Although much eAort has been devoted to discovering
exact solutions of Einstein s equations since the birth of
general relativity, there are only a few solutions which are
considered as "physically acceptable. " New generating
techniques have been developed to produce asymptotical-
ly flat stationary axisymmetric vacuum spacetimes, but
vacuum solutions are burdened by singularities which are
difficult to handle. What is lacking are physical sources
which would produce the vacuum metrics.

A specific role is played by the Kerr metric [1] (the
discovery of which, thirty years ago, has been considered
[2] to be "among the most important astronomical dis-
coveries of our time. . . , the only discovery in astronomy
comparable to the discovery of an elementary particle in

physics"). Thanks to the black-hole uniqueness the-
orems, the Kerr metric represents the unique solution
describing all rotating vacuum black holes. Nevertheless,
although the cosmic censorship conjecture, on which the
physical relevance of the Kerr metric rests, is a very plau-
sible hypothesis (cf., e.g. [31), it remains one of the cen-
tral unresolved issues in relativity. It would thus support
the significance of the Kerr metric if a physical source
were found which produces the Kerr field. The situation
would then resemble the case of the spherically sym-
metric Schwarzschild metric which can represent both a
black hole and the external field due to matter.

This, of course, has been realized by many workers.
The review on the "Sources for the Kerr Metric" [4],
written in 1978, contains 71 references, and concludes
with, "Destructive statements denying the existence of a
material source for the Kerr metric should be rejected
until (if ever) they are reasonably justified. " The most
recent work we are aware of appeared in 1991, and gives
"a toroidal source, " consisting of "a toroidal shell. . . , a
disk. . . and an annulus of matter interior to the torus"
[5]. The masses of the disk and annulus are negative. To
summarize in Hermann Bondi's way, the sources suggest-
ed so far for the Kerr metric are not the easiest materials
to buy in the shops. . . .

The situation is somewhat diff'erent in the special case
of the extreme Kerr metric, where there is a definite rela-
tionship between mass and angular momentum. The nu-

merical study [6] of uniformly rotating disks indicated
how the extreme Kerr geometry forms around the disk in

the "ultrarelativistic" limit. These numerical results were
recently supported by the important analytical work [7].
However, in the case of a general Kerr metric no physical
sources have been found so far.

Very recently Bicak, Lynden-Bell, and Katz [8] (BLK
in the following) have shown that most vacuum static
Weyl solutions can arise as the metrics of counter-
rotating relativistic disks (see [8] for other references on
relativistic disks). The simple idea which inspired the
work of BLK is commonly used in Newtonian galactic
dynamics [9]: Imagine a point mass placed at a distance
b below the center p=O of a plane z =0. This gives a
solution of Laplace's equation above the plane. Then
consider the potential obtained by reflecting this z ~ 0
potentia1 in z=O so that a symmetrical solution both
above and below the plane is obtained. It is continuous
but has a discontinuous normal derivative on z =0, the
jump in which gives a positive surface density on the
plane. In galactic dynamics one considers general line
distributions of mass along the negative z axis and, em-

ploying the device described above, one finds the
potential-density pairs for general axially symmetric
disks. In fact, Bicak, Lynden-Bell, and Pichon [10] found
an infinite number of new static solutions of Einstein's
equations starting from realistic potentials used to de-
scribe flat galaxies, as given recently by Evans and de
Zeeuw [11].

In this Letter we wish to demonstrate that a similar
method works also for axisymmetric, reflection sym-
metric, and stationary spacetimes. It is important to
realize that although now no metric function solves
Laplace's equation as in the static case, we may view the
procedure described above as the identification of the hy-
persurface z =b with z = —b. The field then remains
continuous but the jump of its normal derivative induces
a matter distribution in the disk which arises due to the
identification. What remains to be seen is whether the
material can be "bought in the shops. "

This idea can be employed for all known asymptotical-
ly flat stationary vacuum spacetimes, e.g. , for the Tomi-

0031-9007/93/71(11)/1669(4) $06.00
1993 The American Physical Society

1669



VOLUME 71, NUMBER 11 PHYSICAL REVIEW LETTERS 13 SEPTEMBER 1993

matsu-Sato solutions, for the "rotating" Curzon solution,
or for other metrics (cf. [12] for references). Here we
shall illustrate the procedure for the simplest, but most
interesting case—the Kerr metric.

Any stationary axisymmetric vacuum metric can be
written in canonical coordinates (t,p, p, z) in the form
[12]

where L,E,F,B are given by (3), p( =p —B /E,
i/2
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Ky ). For the Kerr metric
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where f,g, A are functions of p, z (we put c=G=I).
Spheroidal coordinates (x,y) are commonly used, and we
introduce both prolate ()c =+ 1) and oblate (tc = —1)
ones since we wish to include all types of Kerr metrics:

L' =2x(p'x' —q'y'+2q' —1),
E ' =2p (x —)c) (px + 1 ) + 2xq (1 —

y ),
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k =const.

For the Kerr solution (mass M, specific angular momen-
tum a ) 0) the functions in (1) are ratios of polynomials
[12]:
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Here K=1 for a &M and K'= —
1 for a) M. If a =M,

then x =0, X =M, and p =q =1.
Now we identify the "planes" z =b =const & 0 and

z = —b which will lead to disks with zero radial pressure.
With the Kerr geometry the matching is more complicat-
ed than in the static cases and, therefore, we turn to
Israel's covariant formalism (see [13] for its recent expo-
sition). This enables us, using Einstein s field equations,
to link the surface stress-energy tensor S( )(b) of the disk
arising from this identification to the jump [K(,)(b)]
=K(,)(t,)l, -it, —K(,)(b)l, -—b of normal extrinsic curva-
ture across the timelike hypersurface Z given by z =b (or
z = —b) The tetrad . indices are denoted by (a), (b), . . . ,
with the tetrad vectors being chosen so that three vectors
tangent to Z are just ef, ) =St', ) (p =0, 1,2, 3, [x"I
= [t, (t),p, zJ, a =0, 1,2), while n" = (0,0,0, 1/Qg„) is the
unit normal, as required [13].

As a consequence of Einstein's field equations we find
the nonvanishing components of the surface stress-energy
tensor to be

V" =N(1, 0,0,0), (7)

and his unit spatial hase vector in the t)) direction be

W" =J(P, 1,0,0) . (8)

The cpnditipns V"V„=—1, W" W& =1, and V"W =0
determine three of the parameters entering (7) and (8) in

terms of the fourth, of 0 say. Assume now a tensor T"'
[which will be calculated from (4)-(6)] has nonvanish-

ing components T, To& T". Then, by chposing Q
=[(TI —T()) —[(T' —T')'+4T('T']' ']/2T), T"' can
be cast into the form

T"=~V~ V'+ P'W~W',

where

TM P2T(( T II ~2T00
(10)N'(I P'n') ' — J'(1 —P2n2)

Hence, the observers circulating with the 4-velocity (7)
will see the diagonal form (in t, p components) of T"'
with

T(0)(0) =T""V&V„=o', T(0)(() =T""V&W =0,

T(()(() = T"'W„W„=P .

We call such observers "p isotropic" (FIOs) since the
isotropy concerns the (t direction only.

If o ~ P )0, FIOs can consider the stress-energy ten-
sor (11) as representing two equal streams of collisionless

[Above in (5) and (6), both x and y are evaluated at
z=b; by inverting (2) one finds xli=+t =xlz= t ~—
y2l, =+b =y2l, - b. The formulas below are valid for
all values of K, unless it is explicity stated that, e.g. ,
a )M, i.e. , x = —1.] Equations (4)-(6) give the stress-

energy tensor of the disks.
Let us now show that the disks may be interpreted as

being made of two streams of collisionless particles that
circulate in opposite directions. In order to see this, we

find, at each radius p and for z =b, the preferred observer
for whom the stress-energy tensor (4) acquires a diagonal
form. Let his 4-velocity (the timelike eigenvector of the
tensor) read
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If cr is the surface proper rest mass density of one streamP
(measured in axes that move with it), then the surface

~ 1

density of its rest mass measured by an FIO ts 2 0'o

=o [1 —(U*) l ' . The surface energy density of theP
pair of streams is

T(o)(o) =o =o /[1 —(U*) ]' =2a /[1 —(U*) ]. (13)

The tangential pressure caused by the counter rotation is

T(()(() =o(U*) . The sum of the proper rest mass sur-

face densities of both streams is simply

20'p =c7 P . (i4)

The condition that the velocity of the streams U* does
not exceed the velocity of light is just the dominant ener-

gy condition (see, e.g., [3]).
What is the relation of FIOs to the locally nonrotating

frames (LNRFs)? FIOs rotate with respect to LNRFs
with the velocity given by

I'= [g»/( —goog((+go() '"]« —ro),

particles that circulate in opposite directions with the
same velocity

(i 2)

—9a /4M. Then we can construct physical disks only
with Um, „—0.3(M/a) &( I.

In coordinates (p, z) the ergoregion (cf., e.g. , [3]) has a
"toroidal" character, the center of the generating circle
with p=const is at po=M(q —1/2q), the radius being
%=M/2q. (The ergosphere is the real toroid only for
a & M; for a & M, po & %—such set contains the rod
representing the hole's interior and is topologically a
sphere. ) For 1)a/M & I/42=0. 707, the disks given by
(M —a ) ' & b & M /2a produce the ergoregion.
Their central density is positive and the graphical results
show (see below) that they are physical everywhere. It
turns out that physical disks producing an ergoregion ex-
ist even for a/M & 1, provided that a/M & 1.044.

Here we shall confine ourselves to illustrate just one
case—with a/M=0. 8. The disks corresponding to dif-
ferent choices of b are compared by exhibiting the circu-
lar velocities, etc. , as functions of the "circumferential"

proper radius R =jg«„where g~ is given by (1)-(3).
In Fig. 1(a) we give the velocity curves of counter-
rotating streams as measured by FIOs. These were cal-
culated, starting from (12), for twelve disks; the disks be-

where ra= —g«/g~=A/(p f —A ). Therefore, the
streams circulate with diff'erenr velocities in LNRFs and,
of course, with respect to "distant stars. " That is why the
disks produce stationary rather than static fields.

The physical quantities introduced in (12)-(15) are
given in terms of the metric (1)-(3), and the stress-

energy tensor (4)-(6). Hence, all the physical quantities
describing the disks are given analytically The re. sulting
expressions, however, are so complicated that it is only
reasonable to exhibit them graphically. Yet, the central
surface density has a simple form

o, =(M/2n) [(b+M)' —a'](b +a —M')

x [(b+M) +a ]

(a)

0.8

0.6
O
O
0)

0.4
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(b) 0.1

R/M

In order for the central density to be positive, one must

make the identification at b & M —a . [This is evident

in the black-hole case since the hole's interior is mapped
onto the rod p=0, —(M —a )'~ &z & (M —a )'
If a )M, one has to choose b & a —M. The central den-

2 2
sity can become arbitrarily large for b (M
—a )'/ —a region "close" to the horizon (which itself
was cut off) is then included. o, & 0 can be large also for
a) M. However, in the cases with a & M, it turns out
that the physical condition P) 0 [cf. (12)] leads to the
inequality

p (9x —6x + I) —p(4x —24x +4x)
—(7x —10x —1)(0,

where x=b/p and p =a /M —
1 [cf. (3)], which re-

stricts b more strongly. For a ))M one finds b mig

0.08

0.06
CL

0.04

0.02

R/M

FIG. l. (a) Velocity curves of particles in the disks as mea-
sured by FIOs (upper curves) and of FIOs as measured in

LNRFs (lower curves) as functions of proper circumferential
radius R for twelve Kerr disks (a/M =0.8, b/M =0.6013,
0.613, 0.87, 1.11, 1.34, 1.56, 1.78, 2.00, 2.21, 2.42, 2.63, 2.84).
(b) The sum of proper rest mass densities as a function of R for
the same twelve disks as in (a).
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come more relativistic with decreasing b. In the highly
relativistic disks (upper two curves) U* increases ex-
tremely rapidly as one moves away from the center, ap-
proaching the velocity of light at R ~M, and then starts
decreasing. Also in Fig. 1(a), velocity curves of the FIOs
with respect to the LNRFs are plotted by using (15). Al-

though these velocities achieve also high values ( V
-0.25), their maxima occur at larger R —(2-3)M. In

particular, in the two most relativistic disks, the FIOs
[the velocity curves of which cross the other curves from
bottom to the top in Fig. 1(a)] do not move so rapidly
with respect to LNRFs close to the center. (Here "close"
refers to the proper circumferential radius R.) Just these
two disks —from the twelve disks exhibited —produce an

ergoregion.
Figure 1(b) gives the plots of the sum of the surface

proper rest mass densities of both streams as calculated
from (14). For highly relativistic disks, 2a~ rises rapidly
towards the center; however, it decreases then very rapid-

ly with R, and in the most relativistic case even reaches a
local minimum at those R where U* 1. The central
gravitational redshift is z, = 10 in this case.

We are not aware of any exact analytic solutions for
the sources of the stationary gravitational fields with such
physical properties as the disks constructed here. Al-
though extending to infinity, they have finite mass and ex-
hibit interesting relativistic properties like high velocities,
large redshifts, and dragging eAects, including ergore-
gions. In the Newtonian limit —when no dragging
arises —their features are the same as for the rotating
disks with only one stream of particles; in the relativistic
regime, the central parts of a realistic, highly relativistic,
rotating flattened object should have some properties in

common with these disks. Incidentally, very recent obser-
vations [14] yielded the astonishing result that the disk of
the galaxy NGC 4550 is built from two nearly identical
counter-streaming stellar components; other galaxies are
being investigated in light of this discovery.

J.B. is grateful to Donald Lynden-Bell for making pos-
sible his visit to Cambridge in 1992 which resulted in the

papers [8,10]. After finishing the work presented in this
Letter (cf. also [15]) we learned from Professor Lynden-
Bell that he and C. Pichon had independently constructed
similar Kerr-disks models with radial pressure [16].
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