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An Integrable Shallow Water Equation with Peaked Solitons
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We derive a new completely integrable dispersive shallow water equation that is bi-Hamiltonian and
thus possesses an infinite number of conservation laws in involution. The equation is obtained by using
an asymptotic expansion directly in the Hamiltonian for Euler s equations in the shallow water regime.
The soliton solution for this equation has a limiting form that has a discontinuity in the first derivative at
its peak.

PACS numbers: 03.40.6c, 11.10.Ef, 11.10.Lm, 68.10.—m

Completely integrable nonlinear partial differential
equations arise at various levels of approximation in shal-
low water theory. Such equations possess soliton solu-
tions —coherent (spatially localized) structures that in-
teract nonlinearly among themselves then reemerge, re-
taining their identity and showing particlelike scattering
behavior. In this paper, we use Hamiltonian methods to
derive a new completely integrable dispersive shallow wa-
ter equation,

u&+ 2mux uxor + 3uux 2uxuxx+ uuxxx ~

where u is the Auid velocity in the x direction (or
equivalently the height of the water's free surface above a
flat bottom), tr is a constant related to the critical shal-
low water wave speed, and subscripts denote partial
derivatives. This equation retains higher order terms (the
right-hand side) in a small amplitude expansion of in-

compressible Euler's equations for unidirectional motion
of waves at the free surface under the inAuence of gravi-

ty. Dropping these terms leads to the Benjamin-Bona-
Mahoney (BBM) equation, or at the same order, the
Korteweg-de Vries (KdV) equation. Our extension of
the BBM equation possesses soliton solutions whose limit-

ing form as a 0 has peaks where first derivatives are
discontinuous. These "peakons" dominate the solution of
the initial value problem for this equation with x =0.
The way a smooth initial condition breaks up into a train
of peakons is by limiting to a verticality at each inflection
point with negative slope, from which a derivative discon-
tinuity emerges. Remarkably, the multisoliton solution is

obtained by simply superimposing the single peakon solu-

tions and solving for the evolution of their amplitudes and

the positions of their peaks as a completely integrable
finite dimensional Hamiltonian system.

Our equation is bi-Hamiltonian, i.e., it can be ex-
pressed in Hamiltonian form in two different ways. The
ratio of its two (compatible) Hamiltonian operators is a
recursion operator that produces an infinite sequence of
conservation laws. This bi-Hamiltonian property is used

to recast our equation as a compatibility condition for a
linear isospectral problem, so that the initial value prob-
lem may be solved by the inverse scattering transform
(1ST) method.

The unidirectional model. —Consider Euler's equations
for an inviscid incompressible Auid of uniform density
with one horizontal velocity component u in the x direc-
tion, and w in the vertical (z) direction. The Auid is act-
ed on by the acceleration of gravity, g, and is moving in a
horizontally infinite domain with an upper free surface at
z =g(x, t) and Aat bottom at z = —hp. Substituting the
solution form motivated by shallow water asymptotics
[1], u =u(x, t), w= —(z+hp)u„, into the conserved en-

ergy (kinetic + potential) for Euler's equations, and ex-

plicitly performing the z integration leads to the energy

HoN =
2 f+ dx[riu + 3 rl u„+g(rl —hp) ), where rl

=g+hp is the height of the water above the bottom.
Substituting the same solution form above into Euler's

equations and integrating over the vertical coordinate
leads to the Green-Naghdi (GN) equations [2]. The GN
equations conserve the energy HG~. In fact, they are ex-
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pressible in Hamiltonian form [3] as

Bm +mti ri8 &HGN/~m

tlri 0 BHoN/bri
(2)

~here the momentum density m is defined by m
=8HoN/Bu. The GN equations do not necessarily refer
to a thin-domain expansion in a small parameter e that
measures the ratio of depth to wavelength. In such an ex-
pansion the kinetic energy of vertical motion (—q u„) in

HGN would be O(e ). Shallow water theory makes a fur-
ther small-amplitude assumption, in the form g =h p

+O(a), a«1, and balances a=a . In contrast, the
Hamiltonian HGN retains nondominant terms (e.g. , g )
that would be higher order in such an expansion. Start-
ing from the GN equations, further small-amplitude
asymptotics and restriction to unidirectional propagation
in a frame moving near the critical wave speed cp = J'gho
leads to the KdV equation [4], u, +cpM + 2 pll + 6 co
xhpux „=0, or, with the same order of accuracy in the
thin-domain expansion, the BBM equation [5], u, +cou
+ 2 uu„—6 hou„„, =0. Instead of making asymptotic
expansions in the equations of motion, as in the deriva-
tions of the KdV and BBM equations, our approach in

deriving (1) is to make a unidirectional approximation by
relating I to ri in the GN system and preserving the
momentum part of its Hamiltonian structure (2). For
this purpose, we will set ri =hn Jm/h Den, and since
ri ho as ~x( ~ the boundary conditions on m will be
assumed to be m hnco as ~x~ ~. The functional
C =I—+ Jm dx is the Casimir for the Hamiltonian
operator (mt)+ 8m) and so we will refer to this invariant
manifold as the Casimir manifold for (2). Next, we scale
u au in the Hamiltonian HGN, look for m in the form
rn =h pep+ am &+ a m2+ a m3+ and expand HGg
acco'rdingly. With this scaling and expansion, defining m
as the variational derivative of the Hamiltonian with
respect to u, and balancing at order O(a ) gives [6]
m~ =2(hnu —hou„„/3). The Hamiltonian may then be
rewritten as HGN =H~D+O(a ), where

H|D=(a /4) J mlu dx+(a/2)„' mlcodx,

or, in terms of u,

3 2
3 h o uxxi + cpux + 2 auux 6 h p couxxx

3 ahotl tl„„+ 6 ahouu„„. (3)

Dropping the right-hand side of this equation gives BBM

and the factor 2 arises from restricting to a submanifold
[7].

The O(a) equation of motion for m on the Casimir
manifold is therefore

rn, = —(m8+ |lm )sH|D/sm

= —(a/2 )(I8+ tlm )u —(co/2 )m, ,

or KdV, modulo replacing u,„, by —cou „„[4].Thus (3)
can be seen as a BBM equation extended by retaining
higher order terms (selected by the Hamiltonian ap-
proach) in an asymptotic expansion in terms of the
small-amplitude parameter a. The restriction to the
Casimir manifold is equivalent at O(a) to the unidirec-

tionality assumption g= @ho/g u+O(a) in the usual
derivation of the KdV and BBM models from the Bous-

sinesq systems [4,8]. In fact, g=Qhn/g [u —ho/3u„ l

+O(a), and in a thin-domain approximation the double
derivative term in this expression would acquire a factor

2

Rescaling (3), dropping a, and going to a frame of
reference moving with speed lr=co/4 reduces the equa-
tion to the standard form (1). Notice that (1), like
BBM, is not Galilean invariant, i.e., not invariant under
u u+x, t t, x x+xt. Thus, Eq. (1) is best seen
as a member of a family of equations parametrized by the
speed K of the Galilean frame.

Using the identity (1 —8 )e ~ ~=26(x) and setting
m[~]=—f+"dye~p( —ix —y~)v(y), expresses Eq. (1) in

nonlocal form as

u(+uu„+2K%'[uy] = —R[uuy+ —,
'

uyuyy] .

uxx~ = 3uux+ 2uxuxx+ uuxxx ~ (4)

where u is defined on the real line with vanishing bound-
ary conditions at infinity such that the Hamiltonian
H~ =

&
f+ (u2+u„)dx is bounded. As with (3), H~

generates the flow (4) through m =u —u„„, I, = —(m6
+ tlm )8H|/8m.

Steepening at in+ection points. —Consider an initial
condition that has an inflection point at x =x, to the
right of its maximum, and decays to zero in each direc-
tion suSciently rapidly for Hi to be finite. Define the
time dependent slope at the inflection point as s(r)
=u„(x(t),t). Then the nonlocal form of (4) (with
K =0) and standard Sobolev estimates yield a difl'erential
inequality for s, ds/dt ( —s /2+H~. Hence, the slope
becomes vertical in finite time, provided it is initially
su%ciently negative. If the initial condition is antisym-
metric, then the inflection point at u =0 is fixed and
dx/dr =0, due to the symmetry (u, x) ( —u, —x) en-
joyed by (4). In this case, no matter how small ~s(0)~,
verticality develops in finite time. This steepening prop-

Dropping the quadratic terms on the right-hand side of
this equation gives the one studied by Fornberg and
Whitham [9]. Fornberg and Whitham show that travel-
ing wave solutions of this truncated equation have a
peaked limiting form. Moreover, nonsymmetric initial
data with two inflection points in their case can develop a
vertical slope in finite time.

In a later paper we will discuss the parametrized fami-
ly (1). The present paper focuses on the limiting case
x=0,
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erty implies that traveling wave solutions of (4) may not
have the usual bell shape since inflection points may not
be stationary in time. In fact the traveling wave solution
is given by u(x, t) =cexp( —ix —cti). This solution
travels with speed e and has a corner (that is, a finite
jump in its derivative) at its peak of height c [10].

N-soliton solution. —Motivated by the form of the
traveling wave solution, we make the following solution
ansatz for N interacting peaked solutions, u (x, t )
=g;-Ip;(t)exp[ —ix —q;(t)i]. Substituting this into
Eq. (4) yields evolution equations for qi and pi, that are
Hamilton's canonical equations, with Hamiltonian Hz
given by substituting the solution ansatz above into the
integral of motion H I, yielding H~ = —,

' ppj - Ip;p~
xexp( —iq; —qli). Hamiltonians of this form describe
geodesic motion. The peak position q;(t) is governed by
geodesic motion of a particle on an N-dimensional sur-
face with inverse metric tensor g'J(q) =exp( —iq; —

qadi),

q E IR . The metric tensor is singular whenever q; =q~.
Two soli to-n dynamics Con. —sider the scattering of

two solitons that are initially well separated, and have
speeds c1 and c2, with C1 & c2 and c1 & 0, so that they col-
lide. The Hamiltonian system governing this collision
possesses two constants of motion, Hp=pi+p2=ci+C2
and H~ =(ci+c2)/2. Notice that if the peaks were to
overlap, thereby producing qi —q2=0 during a collision,
there would be a contradiction 2H~ =(ci+c2) =ci +c2,
unless p were to diverge when the overlap occurred.

The solution of Hamilton's canonical equations for
Hamiltonian Hz when N =2 is given by

q1
—

q2 = —ln
4(e ~

—c,)'ye" '*"

ye
P I P2 (C I

—C2)

—(C I
—C2) t

4C1C2
—(Cl —Czi +4c1c2

(5)

and the conservation law for pi+p2. Here y is a constant
specifying the initial separation of the peaks, and c1 and
C2 are the asymptotic t + ~ values of their speeds, or
amplitudes. The divergence of /I I and p2 in Eq. (5) asso-
ciated with soliton overlap can only occur when c I and c2
have opposite signs. That is, only "head-on" collisions
can lead to overlapping peaks (see Fig. 1 for the "soli-
ton-antisoliton" case ci = —c2 =c).

The two soliton solution (5) determines the "phase
shifts, " i.e., the shifts in the asymptotic position for
t ~, that the solitons experience after interaction. As
t +~ the solitons reemerge unscathed, the faster (and
larger) soliton ahead of the slower (and smaller) one.
Defining the phase shift for the faster soliton to be h,qf—:q2(+~) —qi( —~), and for the slower soliton, Aq,
=q;(+~) —q2( —~), leads to hqf =In[ci/(ci —c2) ],
and d,q, =In[(ci —c2) /c2]. These formulas show that
when ci/c2) 2 bot]) solitons experience a forward shift.
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FIG. 1. The soliton-antisoliton solution u reconstructed
from Eq. (5) is u(x, t) c(exp[ —ix ——,

' q(t) i] —exp[ —ix
+ & q(t)i])/tanh(ct). This solution displays the steepening be-
havior discussed in the text. The slope becomes vertical and the
amplitude of the solution becomes (everywhere) zero right at
the moment of overlap. At later times the peaks redevelop and
depart again according to the symmetry (u, t) ( —u, —t).

For 1 & c I jc2 & 2 the faster soliton is shifted forward
while the slower soliton is shifted backward. %hen
c I jc2 =2 no shift occurs for the slower soliton.

Bi Hami/to-nian structure. —Equation (4) follows, as
well, from an action principle expressed in terms of a ve-
locity potential. This action principle leads to an addi-
tional conserved quantity, H2= —,

' f—+ (u +uu„)dx, and
another Hamiltonian operator, t) —tl . Our Eq. (4) then
can be written in Hamiltonian form in two different ways,
m, = —(8 —8 )8H2/bm = —(m8+/lm)bHI/bm The.
two Hamiltonian operators BI =|)—a' and 82 =|1m+mB
form a Hamiltonian pair. That is, their sum is still a
Hamiltonian operator [11]. Equation (4) is thus bi-
Hamiltonian and has an infinite number of conservation
laws recursively related to each other by 8 I bH„/bm
=B2bH„I/bm= —m, "+', -n =0, +. I, ~ 2, . . . . Starting
from H I and H2 this relation generates an infinite
sequence of conservation laws including, e.g. , Hp
=f-+ mdx, H —I=f-+ Mmdx=C, H —2=2 f-+ [m„/
4m / —2/Jm]dx, etc. Correspondingly, the recursion
operator % =82BI ' generates a hierarchy of commuting
flows, defined by m, "+' =K„+I[m]=%K„[m], n =0,
+ 1, ~2, . . . . The first few flows in the hierarchy are
m, = —(t) —tl )(24m ) ', m, ' =0, m, = —m„, and
m, = —(m8+|)m)u. The last of these is our Eq. (4)
and the first is an extension of the integrable Dym equa-
tion [12]. It turns out that all the flows in this hierarchy
are isospectral and thus completely integrable.

The isospectral problem. —In order to find the isospec-
tral problem for our equation, we follow Gel'fand and
Dorfmann [13] in considering the skew symmetric spec-
tral problem, (XBI —B2)p =0. A class of solutions of this
problem are related by &=IIf to the solutions I/t of a
second order symmetric spectral problem. By imposing
isospectrality, X, =0, our Eq. (1) follows from the compa-
tibility condition IIt„„i= y,„„ofthe system for I/f(x, t),
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I m(x, t)+ tc

2

y, = —(X+u)y„+ —,
' u„y.

This is the isospectral problem we seek. The system (6)
provides a means of solving the initial value problem for
(I) by the purely linear inverse-scattering transform
technique [121. For instance, if the boundary conditions
on m are taken to be zero at x = ~ ~ (sufficiently fast)
[14], then the spectral problem (6) when tv=0 has a
purely discrete spectrum since y(x) exp( ~ x/2) as
ixi ~; i.e., eigenfunctions always decay exponentially
at infinity. If, e.g. , the initial condition u(x, O) is chosen
such that u(x, 0) =A [(tr/2)e" —2sinhx arctan(e") —I],
so that m(x, 0) =A sech (x), for an arbitrary constant A,
then it is easy to show [15] that the eigenvalues k for (6)
are given by X„=2A/[(2n+I)(2n+3)], n=0, 1,2, . . . .
This formula shows explicitly that X=0 is an accumula-
tion point for the discrete spectrum and the eigenvalues
converge to it as I/n, n ~, a fact that holds in general
for any initial condition decaying exponentially fast at
infinity. Equations (6) also imply that the ¹oliton
mechanical system with Hamiltonian Hz is completely
integrable [16]. When tr~O, i.e. , for an equation in the
family (I), the limiting behavior of Itt becomes y(x)

exp(~xdl/4 —tc/2X) as ixi ~, and so a continu-
ous spectrum develops out of the origin in the interval
0~1, (2tc. Also, for iv~0 the soliton solution of (I) be-
comes C and there is no derivative discontinuity at its
peak. The peculiar feature of the disappearance of the
continuous spectrum in the limit K 0 can be traced to
the constant —,

'
in the spectral problem (6), which in turn

is generated by the first derivative operator in 8 &.

Numerical simulations [17] confirm the analysis dis-
cussed here and demonstrate the robustness of the peaked
soliton solutions. These simulations clearly illustrate the
inI]ection point mechanism by which a localized (posi-
tive) initial condition breaks up into a height-ordered
train of peaked solitons moving to the right, with the tall-
est ones ahead.
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