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Equilibrium polymerization in a solvent exhibits critical concentration fluctuations governed

by a nonclassical critical exponent.

A dramatic enhancement of the concentration fluctuations

above those given by mean field theory (Flory theory) is predicted that persists even far from the
transition. The predicted behavior explains recent neutron scattering results on polymerization in
living polymer solutions and suggests improvements in experimental conditions. It is also in accord
with recent measurements of scattering from solutions of giant polymeric micelles.

PACS numbers: 82.35.+t, 36.20.-r, 64.60.Cn, 75.10.Hk

Equilibrium polymerization can lead to critical phe-
nomena which have been described by the n — 0 limit
of the n-vector model of magnetism [1,2]. Several ex-
amples have been studied, including liquid sulfur [1,3],
living organic polymers [4], polymerlike micelles [5], and
protein filaments [6]. In many cases solvent is present,
and the theory has been extended with the prediction of
new phase transition phenomena [7,8]. The possibility of
ring formation has been considered with a mapping onto
the Ising model [9,10] and new multicritical effects [11].

Equilibrium polymerization in a solvent has been
mapped exactly onto the dilute n-vector model in the
limit n — 0 and studied in the mean-field approximation
[8]. In this approximation, it was shown to be equivalent
to Scott’s [7] theory of sulfur solutions. At the polymer-
ization transition, the concentration susceptibility [de-
fined in Eq. (1) below] is predicted to exhibit a sudden
finite jump, the amplitude of which may diverge at a
tricritical point driven by the polymerization. However,
from general thermodynamic arguments [12], the concen-
tration susceptibility, x, should exhibit a weak, specific
heatlike singularity as the transition is approached, as
discussed briefly recently [13]:

_ Oz, e
x= (samer) ~I-TEl ™)
where z, is the number fraction of solvent, A is the
difference of chemical potentials between solvent and
monomer, and « is the specific heat critical exponent
for the equilibrium polymerization transition in the neat
monomer. The replacement of a by a/(1 — ) is due to
the Fisher renormalization [14] resulting from approach-
ing the transition at fixed concentration, z,.

In this Letter we first show how the equilibrium poly-
merization of chains in a solvent can be mapped exactly
to the problem of equilibrium polymerization of chains
from pure monomer in the special case of zero mixing
energy between solvent and monomers. This then per-
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mits the study of nonclassical critical fluctuations in the
presence of solvent in terms of the original, nondilute
n — 0 vector model. These critical fluctuations are dra-
matic even in the absence of any interactions between
monomer and solvent. We show explicitly a nonclassical
divergence of the concentration susceptibility of the form
given by Eq. (1). In addition, the plateau value of x (its
limiting value well into the polymerized regime) exhibits
a large critical enhancement which itself diverges with a
nonclassical critical exponent as s — 1. These striking
predictions are confirmed experimentally in solutions of
poly-a-methylstyrene living polymer solutions [15,16] by
neutron scattering and in polymeric micelles [5] by light
scattering.

We consider a lattice model in which the volume is
divided into C cells on the sites of a regular lattice in
d = 3 dimensions. Each cell contains either a monomer
or an inert solvent molecule. The monomer is inactive
or active, and, if active, can be either isolated or bonded
to one or two other monomers. This model has been
discussed in some detail, both in the absence [2,4] and in
the presence [4,8] of a solvent. The crucial observation
here is that, in the special case of zero energy of mixing
between solvent and monomers, it is possible to sum in
closed form over the two possible states (“occupied by
inactive monomer” or “occupied by solvent”) of every
cell not occupied by active monomer. This results in a
factor of 14( for each of these C'— Ny — N, cells, where N,

is the number of bonds and N, the number of polymers,
2(Fgo—Emm)

and where (in the notation of [4]) { = P
is an effective activity of solvent relative to monomer. As
a result, the partition function Y of the solution may be
written in terms of that in the absence of solvent, Y9, as

_ o e cyo Ko _Ka
Y(prKlvT7<)_e (1+<) Y (1+pca1+<.>;

(2)

where ¢ is the number of nearest neighbors of a site on
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the lattice and K, and K are statistical weights asso-
ciated with the bonds and polymer ends, respectively.
This provides an exact mapping between the partition
function for the solution in the absence of an energy of
mixing and that of the neat system. The constants K,
and K are of the Arrhenius form [4] and are assumed to
be independent of (.
By differentiating the partition function, we obtain

(Np) K, K,
.’L‘bz—c—,———-’l?g<1+pcal+c> ’ (3)
N, K, K
CEp: (Cf> =xg (1 +pc71+1<.) ’ (4)
_Ns) ¢
Ts = C —1__’_4-(1"450)7 (5)

where ) and 9 are the corresponding averages in the

absence of solvent and ¢° = zf + 0.
The relevant concentration susceptibility is

_ ( o, ) Ny = (N)D sy
Ky, K,

dln¢ C T 1+4¢

+(r5) (k) + (k).
1+¢ OInK, ) p. 0K, / p ’

(6)
where the partial derivatives of ¢° are evaluated at
K,/(1+¢) and K;/(1 +¢).

A mean-field expression for x can be obtained by using
mean-field theory for the n — 0 vector model together
with the mapping (2). The result is identical with that
obtained [15] from the mean-field approximation to the
dilute n — 0 vector model with zero mixing energy. At
the transition, K = (1 — z,)~!, there is a jump in x
from z,(1 — z,) when K, < K; to z; when K, > K,
with a rounding for nonzero z,,.

Beyond mean-field theory, ¢° exhibits critical behavior
in the limit z, — 0, corresponding to that in the n — 0
vector model:

(1) = Ax (1- ’; ) (7)

where A1 =1 and A_ = 0 correspond to K, greater and
less than K°, respectively, with a being the specific heat
exponent for the n — 0 vector model (a ~ 0.236 from &
expansion [17]). This simple expression has the correct
(zero) amplitude below K, and the correct power law for
Kp > K°. The choice of unit amplitude above K, gives
¢° the correct behavior (¢° — 1) as K, — oo.

From Egs. (5), (6), and (7), one finds for Y, in the
limit 2, — 0 and K, close to Ky = (1 — z,)"1Kg°,

x =zs(1 — zy)

+Aim§ [

o

I
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where A4 is the same as in Eq. (7). This corresponds
to the behavior predicted from general arguments, given
in Eq. (1). The mean-field result is obtained when « is
replaced by zero in Eq. (8). The relatively large value
of « [it is the largest for the O(n) vector models] results
in the critical fluctuations having a strong effect on the
concentration susceptibility in the vicinity of the poly-
merization transition.

Equations (6) and (7) predict another striking effect
even far from the transition, well into the polymerized
regime. When K, becomes large, x approaches a plateau
value, Xoo, Which is a function of z, and diverges in the
limit of high dilution. In the limit X, — oo and for 1 —z,
sufficiently small,

Xoo = (1 —a)(1 — z,) " T==. 9)

Equations (7), (8), and (9) apply in the limit z, — 0,
i.e., K1 — 0. The fact that in real, experimental systems
K and z, are nonzero gives a rounding of the singularity
in x, which exhibits a maximum, x*, at K, shifted from
K. Scaling of the n — 0 vector model equation of state
implies the following dependences of K, and x* on z,
(and z,):

BB | = s (10)
)
K;; 1—z,° 7
* _T%E

(11)

Note that the rounding of x is predicted to become more
pronounced with increasing x, as well as with increasing
xp. Comparison of Eq. (11) with Eq. (9) indicates that
for any fixed z, and large enough z,, the maximum will
disappear into the plateau.

A more detailed study of the shape of x requires an
equation of state of the n — 0 vector model. We use the
parametric form already found to give good results for
both living polymers and sulfur [3,4]:

X ~ TsTp

KCO
L1 =7 = r(1-0b%6?),
KP
1
zp = ameyr'~*(6%),
1
Tp = §am0r2_°‘02(1—02),
1
K, = §a2r26502(1—02)2, (12)

where b? = 3(6 —3) /va, with a, 8, v, and § being critical
exponents of the n — 0 vector model [17], satisfying the
scaling laws [18] 8(6 +1) =2 — a and B(6§ —1) =v. The
choice of amplitude (1/2)amgy = (b% — 1)1~= causes this
equation of state to reduce to Eq. (7) in the limit z, = 0
or K = 0. With o = 0.236 and 285 = 2.925 [17], this
gives amg = 1.77, very close to the value (1.74) used in
(3,4]. (The two values give essentially identical results.)
The dominant term in the square brackets in (6) is
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FIG. 1. Concentration susceptibility, X, as a function of the
natural log of K, for several values of z, and z,. From left
to right the sets of curves correspond to z, = 0.2, 0.6, 0.8,
0.9, and 0.95. The lowest curve in each set is the mean-field
result with £, = 107%. The remaining curves, in increasing
order, correspond to the parametric equation of state with
z, = 1074, 1075, and 1078,

(0zp/0In Kp)k,. Using (12) to evaluate this derivative,
one obtains the following expression for x:

_ s ¢ VA + QK
X=13¢ * <1+<) ( K, ,,)

1
x (—2—am0'y> r=292F(6?),

(13)

where F(8?) is a smooth function, decreasing from y+1 =
2.16 at § =0to (1 —a)/(*> —1) =0.737 at @ = 1. The
remaining terms in the square brackets in (6) scale as
higher powers of r and so can be viewed as corrections
to scaling near the critical point. In addition, they are
proportional to 1 — 82 as well as to 62, so they are dom-
inated by other terms in (13) whenever z, is small. We
have included them in our calculations, but the figures
are unaffected if they are neglected.

In Fig. 1 we show the behavior of x for several values of
zp and ;. The mean-field result at the largest value of z,
is also shown for comparison. Note the dramatic increase
in the amplitude of the singularity and the plateau value
with increasing ;. Note also the pronounced increase in
rounding as either z, or z, increases.

The predicted fluctuation effects can be seen in scatter-
ing experiments. Neutron scattering has been measured
at low angle in a solution of a-methylstyrene and deuter-
ated tetrahydrofuran placed in a sealed cell with a low
concentration, z;, of initiators [15,16]. This system poly-
merizes in equilibrium when the temperature is lowered
with a fixed concentration of polymers z, = %xz (two ini-
tiators are required to prepare an activated monomer).
Because neutrons are sensitive only to the nuclei, the
scattering essentially measures the solvent concentration
fluctuations (6). A preliminary experiment was done
with z, = 0.88 and z,, = 107* and a small temperature

240 260 280 300
T(°C)

FIG. 2. Concentration susceptibility, x, as a function of
temperature for poly-a-methylstyrene solutions for various z,
and x,. From left to right the pairs of curves correspond to
z, = 0.95, 0.88, and 0.80. The lower curve in each set corre-
sponds to z, = 2.5X 1074, the upper curve, to z, = 2.5X 1073,

range below the transition [15]. The small ¢ limit of the
scattering intensity, which gives the concentration sus-
ceptibility, exhibits a slightly rounded jump which was
fitted by the mean-field expression for x with nonzero
mixing energy. More recent experiments [16] have been
performed with two different samples (51 = 0.88, Tp =
2.35% 1074 and z,2 = 0.95, Tp2 = 2.5x107*) over a wider
range of temperature. For the first of these, a maximum
in  is clearly seen, whereas for the second, no maximum
is observed, the value of x rising smoothly to a plateau
value with decreasing temperature. This behavior is pre-
dicted by the present theory, as shown in Fig. 2, where
x is calculated with the experimental values for z; and
zp and for the enthalpy and entropy of polymerization
(AH, = —34.80 kJmol™!, AS, = —106 Jmol"'K™1).
As predicted from Egs. (8) and (10), the peak gets nar-
rower and less shifted as z, and z, get smaller. Limits in
the temperature range and sample preparation put lim-
its on practical values of =, and z,, but a sample with
z, = 0.8 and z, = 2.5 x 1075 should be accessible and
should show a substantial nonclassical critical effect, as
shown in Fig. 2.

The theory can easily be extended to calculate the cor-
relation length, £, which has been measured from neutron
scattering data. In terms of the parametric model [Eq.
(12)], € is given by

€ = &(0%H)r,

where £,(62) varies smoothly from 8 = 0 (unpolymerized
region) to § = 1 (polymerized region) and does not vanish
or diverge in either limit. For simplicity, we have chosen
it to be a constant, £&,. We then find a rounded peak in £
that diverges as z, — 0 and gives results in good agree-
ment with the experiments for the experimental values
of 5 and z,. Results are shown in Fig. 3.

Certain surfactant solutions in aqueous brines seem
to form long, cylindrical, polymerlike micelles that grow

(14)
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FIG. 3. Correlation length, &, for poly-a-methylstyrene so-
lutions for various z, and z,. The values of z, and z, are as
in Fig. 2.

when surfactant is added at constant temperature and
salt concentration. This corresponds to a polymerizing
solution with K7 small and K, large (K, ~ 10%) so that
there is a critical value z§ of x,, and 1 — x¢ is very small
( ~ 107%). In these systems K; and K, are fixed and
1 — z, is varied. The osmotic compressibility or concen-
tration susceptibility has been measured by light scatter-
ing and is found [5] to increase with x, according to the
power law (K, large, 1 — =, small, d = 3)
dv—2

Xoo ~ (1— ) B3 (15)
This result from semidilute polymer solution theory [19]
is identical to our Eq. (9) when one takes into account
the hyperscaling relation [20] dv = 2 — a.

More generally, the connection of the present theory to
conventional polymer solution theory [19] can be made
by noting that Egs. (12)-(14) can be combined to give
the relation x ~ ¢N, where N ~ £1/¥ is the number of
monomers correlated with a given monomer.

The dependence upon z; of the rounding of the transi-
tion due to nonzero z, revealed by the mapping in Eq. (2)
is expected to be much more general than the special case
of zero mixing energy for which it is strictly valid. The
present theory can be easily extended to polymerizing so-
lutions with polymeric rings [9,10] or branched polymers
[21] present by starting from the pure case (without sol-
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vent).
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