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Ferrimagnetic Phases in the Blume-Emery-GrifBths Model:
Implications for the Antiferromagnetic Potts Model
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The cluster-variation method is used to study the phase diagram of the Blume-Emery-GrifBths
model on a simple cubic lattice. The main attention is paid to the ferrimagnetic phases occurring
in a certain range of coupling parameters. A new topology, including three ferrimagnetic phases,
is obtained in the vicinity of the line in parameter space where the model reduces to the antiferro-
magnetic three-state Potts model. The results imply the existence of three phase transitions in the
antiferromagnetic Pot ts model.

PACS numbers: 75.10.Hk, 05.50.+q, 64.60.Cn

The spin-1 Ising model with both bilinear and bi-
quadratic nearest-neighbor interactions, the Blume-
Emery-Griffiths (BEG) model, was initially proposed in
order to describe phase separation and superfluid order-
ing in He- He mixtures [1]. Later the model was used to
describe the properties of multicomponent fluids [2], mi-
croemulsions [3], semiconductor alloys [4], and electronic
conduction models [5).

The Hamiltonian of the BEG model is

where s, = 0, +1 and (ij) indicates summation over
nearest-neighbor pairs.

An extensive analysis of the BEG model with J+K )
0, J ) 0 was made by means of mean-field approxima-
tions (MFA) [1,2,6,7] and renormalization-group (RG)
techniques [8,9]. Exact results for the two-dimensional
honeycomb lattice were obtained on a subspace of pa-
rameters J, K, and 6 [10—12). Further, Monte Carlo
(MC) simulation for J+K & 0 revealed a new, staggered-
quadrupolar phase [13—15]. In this phase, s, = 0 on one
sublattice and s, = +1 at random on the other.

Recently a very rich phase diagram was obtained for
three-dimensional bipartite lattices by the MFA [16], fea-
turing single- and double-reentrancy regions and ferri-
magnetic phases for K & —1. Though RG studies [17]did
not obtain reentrancy and ferrimagnetic phases, it was
suggested this was a result of a restricted How space and
the MFA result was assumed to be correct. This assurnp-
tion was confirmed by Monte Carlo renormalization-
group (MCRG) calculations [18].

Here we present results of cluster-variation method
(CVM) calculations of the BEG model on a simple cu-
bic (sc) lattice. For K/J ) —3 our results are qualita-
tively similar (except for minor details) to those of the
MFA [16] and quantitatively close to the MCRG results
[18]. Therefore the main attention in our investigation
was paid to the occurrence of the ferrimagnetic phases
in the vicinity of K/J = —3 and 6/ J = —12, where the
BEG model reduces to the antiferromagnetic (AF) Potts

model and where we obtain a remarkable difference from
the MI"A result. This particular region was not covered
by MC calculations.

The two-sublattice phase of the BEG model can be de-
scribed by the magnetizations and quadrupolar moments
of the sublattices a and 6:

ma = (Sa) rnb = (Sb) & ga = (Sa), gb = (Sb) .2 2 (2)

and we get the Potts transition at T,i ——2.535, which
is only 2.4'%%uo above the best MC estimation T,/J
2.47 + 0.01 [20]. The ordered phase of this model is six-
fold degenerate, and it was suggested [16] that these six
phases should be accommodated in the BEG model by
the first-order line meeting the twofold degenerate SQ
phase and fourfold degenerate I phase. The I phase
was readily obtained in the MFA [16] in the region
—13 & 4 ( —12. Our CVM analysis gives a much more
narrow region of existence for the low-temperature ferri-
magnetic phase —12.05 & 6 & —12 (Fig. 1) and reveals
a new quite odd topology —actually two different ferri-

The values of these parameters define four phases with
different symmetry. These are (1) paramagnetic (P) with
m = mb = 0, q~ = qb, (2) ferromagnetic (F) with m
mb g 0, q = qb, (3) staggered quadrupolar (SQ) with
m = mb = 0, qa g qb, and (4) ferrimagnetic (I) with
ma g rnb 7 0~ Qa 7 qb ~

In the following we put J = 1, i.e. , temperatures and
energies are normalized by J, when not stated explicitly.
The J ( 0 case can be mapped on the J & 0 case by
redefining the spin direction for one sublattice.

The phase diagram was calculated by the CVM in
eight-point "cube" approximation. The details of the
CVM for the BEG model are given elsewhere [19).

The phase diagram for K = —3 is a particular one,
since the line 4 = —12 (or, to be precise, its J & 0 coun-
terpart) corresponds to the three-state AF Potts model
with the Hamiltonian
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FIG. 1. Calculated (T, A) phase diagram of the BEG
model at K/J = —3. Solid and dashed lines represent the
second- and first-order phase transition lines, respectively, ob-
tained by the "cube" approximation of the CVM. The dotted
line is the result of CVM "pair" approximation. The special
points are critical (C, C'), critical end point (R), multicritical
(A), tricritical (T), and quadruple (Q).
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I"IG. 2. The temperature dependence of the expectation

values for diferent states of the AF Potts model, correspond-
ing to K/J = —3 and A/J = —12. Inset: The temperature
dependence of the global order parameter [Eq. (5)]. The solid
line represent CVM results; the dots, Monte Carlo simulation
(Ref. [22]). The dashed line is for the unstable BSS solution
in the CVM.

magnetic phases do exist: one (Ii) corresponds to that
obtained by MFA and is a result of the instability of
the ferromagnetic phase against a two-sublattice order-
ing, another one (I2) is caused by the instability of the
SQ phase against spontaneous magnetization. Thus, in
the higher temperature region 1.574 ( T ( 2.535 the
sixfold degeneracy is obtained by the coexistence of the
twofold F phase and fourfold ferrimagnetic I2 phase. At
lower temperature, 0 ( T ( 1.543, the phase diagram is
qualitatively similar to the MFA result [16].

The appearance of two ferrimagnetic phases is a rather
unexpected result, because it implies the existence of ad-
ditional phase transitions in the ordered phase of the
three-state AF Potts model on the sc lattice. These phase
transitions separate regions with different types of order-
ing, which can be better described by the expectation
values p, of the three Potts states i = 1, 2, 3 on the
two sublattices u = a, 6 instead of magnetizations and
quadrupolar moments [Eq. (2)]. The relations between
them are

p, =2(q —m), @2=1—q, ps=2(q +m). (4)

The temperature dependencies of the expectation values

p, for the AF Potts model, obtained by our CVM calcu-
lations, are presented in Fig. 2.

A simplified description of the sixfold low-temperature
ordered phase corresponds to p~ = 1, p2

——p3 0,
p&

—0, and p~& ——p3 0.5 and its three cyclic per-
mutations of Potts state indices and two permutations of
lattice indices. In addition, each phase is infinitely de-
generate since, e.g. , states i = 2 and 3 are randomly
distributed on the 6 sublattice yielding a finite zero-
temperature entropy per site: 8 =

2 ln2. After Grest
and Banavar [21] we call this phase the broken-sublattice-
symmetry (BSS) phase. Our CVM result at T = 0.1,

p&
——0.94, p2 ——p3 —0 03 p$ 0 00 and p2

——p3 —0 5,
is quite the same as that obtained by MC simulation [20].
Moreover, these values are saturated since they practi-
cally do not change down to T = 0. The entropy also
does not reach the expected value 2 ln2 = 0.3466, in-

stead saturating at s = 0.3669. It was pointed out [22]
that the difference from the simplified description is due
to the possibility for a Potts state to be on a "wrong"
sublattice if nearest neighbors permit that.

In the higher temperature range, just below the
second-order Potts transition, the ordered state corre-
sponds to another type of ordering, namely, p& ——p2 & 3,
pQ p] ( p3 p3 ( 3 Here the sets of expectation val-

ues for both sublattices are equivalent, except for index
permutations, but the sixfold degeneracy is still obtained
via six complete permutations of the Potts state indices.
We call this phase the permutationally symmetric sub-
lattices (PSS) phase.

The transformation from the PSS ordering to the BSS
ordering appears to be rather complicated. In the inset
to Fig. 1 we present the details of the phase diagram in

the vicinity of this transformation. The critical line be-
tween the ferromagnetic and the ferrirnagnetic I~ phases
approaches the 4 = —12 line from the left terminating
with a critical end point E at T,2

——1.574. This point is
also a critical point C for the ferrimagnetic phase on the
right, though there is no critical line outside the phase
separation line 6 = —12 to the right. The origin of this
criticality will be discussed later.

At the same time there is another first-order transition
on the Potts line at the locus T,3 ——1.543 of the quadru-
ple point Q with first-order phase boundaries (phase sep-
aration lines) spanning both sides of the A = —12 line.
On the left it terminates with critical point C' inside the
ferrimagnetic phase Iy, while on the right it transforms
at the tricritical point T to the second-order critical line
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between the SQ and I2 phases above T = 1.589. The
two types of sixfold degenerate ordered structures take
place above T,2 and below T,3. The structure of the
three-state AF Potts model between these temperatures
is even more complicated. Actually all six p, happen to
be difFerent in this region. One could say that the second-
order transition breaks up the permutational symmetry
between sublattices a and 6, while the first-order transi-
tion establishes the symmetry between two of the three
Potts states.

The ordered phase at T,3 & T & T,2 should be 12
times degenerate, because of the sixfold permutational
symmetry of the Potts states and the twofold symmetry
of the sublattices. The coexistence of the two fourfold
ferrimagnetic phases does not provide this degeneracy.
Indeed, during further investigations we have found a
third ferrimagnetic phase, I3, coexisting with the other
two on the line 6 = —12 in this narrow temperature
range. This phase does not appear in the phase diagram
outside the multiphase line at K = —3, but it emerges at
K ( —3 in a narrow range of A. The above-mentioned
critical point C at T,2 from the right appears to be a
critical point of the phase separation line between I3 and
I2 phases. This means that the 6 = —12 line is a three-
phase coexistence line below T,2 and a two-phase line
above. In the three-dimensional (K, 6, T) phase diagram
the line 6 = —12, K = —3 is the intersection of three
first-order surfaces of coexistence between phases Ii, I2,
and I3. The surface between I2 and I3 is terminated
from above by the isolated critical line with the critical
end point C at 4 = —12, K = —3, and T = T,2.

To our knowledge, this is the first observation of sev-
eral phase transitions in the three-state AF Potts model.
In such a case, the applicability and accuracy of the CVM
for this highly degenerate model are the key questions.
The applicability of the CVM for degenerate systems has
been proven for a number of models, the most relevant
one being the BEG model on the honeycomb lattice [19].
Our calculations for the BEG model on the sc lattice
near K = —1, when compared to the MC data [14], also
confirm the good accuracy of the CVM. However, the
MC calculations for the three-state AF Potts model [20],
though giving values of T, and expectations of the Potts
states at low temperatures very close to ours, make no
hint of the additional phase transitions at intermediate
temperature. It is possible that these transitions do not
manifest themselves during the MC simulation. To sup-
port this suggestion we present in Fig. 3 the results of the
specific heat versus temperature obtained in our calcula-
tions, together with the MC results [20]. The anomaly
at T,2 and T,3 is very small and is not expected to be
seen in MC results due to statistical uncertainty. In our
case the anomaly just fits in between two successive MC
points.

We present below an indirect argument in favor of our
results. We have applied the simplest approximation of
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FIG. 3. The temperature dependence of the specific heat
for the AF Potts model on the sc lattice. The line represents
CUM results; the circles, Monte Carlo simulation (Ref. [20]).

M =
2 (I» 7

—&il + l&2 +21+ I» s
—ps I) (5)

The temperature dependence of this order parameter ob-
tained in Ref. [22] is presented in the inset to Fig. 2 to-
gether with our CVM results for the same parameter.
The MC points and CVM line coincide at lower tempera-
tures, where the BSS phase is predicted by the CVM. For
T,2 & T & T,i the line corresponding to the PSS phase
lies well below the MC data. It is interesting to find

the CVM series, the two-point cluster approximation, to
calculate the phase diagram for K = —3 near 6 = —12.
The result is presented in Fig. l. One can see that it gives
a higher T,i and a much wider Ii phase in the (T, 6)
diagram. At the same time, the I2 phase shrinks but still
is clearly observable. Thus, the change in the ordering
mode for the AF Potts model still takes place in this ap-
proximation. Note that the MFA, being a one-point clus-
ter approximation, gives an even wider Ii phase, higher
T,i, and no I2 phase. According to common experience,
the accuracy of the CVM increases with enlarging the
basic cluster. So we expect the phase diagram of the
eight-point approximation to be much closer to the exact
one than that of the two-point approximation and even
more than that of the MFA. Thus, in the limit of an in-
finite cluster (which is equivalent to the exact result) we
expect the Ii phase to shrink a little and the I2 phase
to become even larger, thereby decreasing the transition
temperatures T,2 and T,3.

It should be mentioned that the ordering of the 3D
AF Potts model on the sc lattice has been a contro-
versial subject for some time. From a rescaling argu-
rnent Berker and Kadanoff [23] suggested the possibility
of a low-temperature phase with no true ordering, but
with algebraically decaying correlations. In contrast, Ba-
navar, Grest, and Jasnow [22] obtained an ordered low-

temperature phase by means of MC simulation and pre-
sented the temperature dependence of the "global" order
parameter, which in our notations could be defined as
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that the CVM calculation of M(T) for the BSS phase in
this temperature range (shown by the dashed line) nearly
coincides with the MC points. However, this phase has
higher free energy than the PSS phase and is not even
stable in CVM. The MFA gives a stable solution for the
BSS phase everywhere below T,q in agreement with Refs.
[16,24]. We argue that this discrepancy between the MC
and CVM results could be a result of a Gnite-size effect
on the MC results. A "tail" like that above T,i could be
present as well above T,~, thus "smoothing out" the drop
of M between T,3 and T,2.

A more sophisticated two-component order parameter
was introduced in the MC calculation by Ono [25]. The
BSS phase was clearly present below T 1, but fluctua-
tions of the order parameter make it hard to distinguish
the stable phase at intermediate temperature. The Huc-

tuation area of the components of this order parameter
in the two-dimensional plot at T = 2.35 covers the loci
of order parameters of both the BSS and PSS phases.

In summary, the phase diagram of the BEG model on
the simple cubic lattice was calculated by means of the
CVM. Near the locus K/J = —3, 6/J = —12, where the
BEG model reduces to the three-state AF Potts model,
we unexpectedly obtain two ferrimagnetic phases, one
on each side of the line 4/1 = —12, instead of the single
phase predicted by the MFA. A third ferrimagnetic phase
emerges at K/J ( —3. This implies the existence of
additional phase transitions in the ordered phase of the
three-state AF Potts model. Actually we have found two
additional transitions of the first and second order. These
transitions control the changes in the ordering regime of
the three states on the two sublattices.
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