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Large-Scale Numerical Evidence for Bose Condensation in the S = 1
Antiferromagnetic Chain in a Strong Field
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Using the recently proposed density matrix renormalization group technique we show that the
magnons in the S = 1 antiferromagnetic Heisenberg chain effectively behave as bosons that condense
at a critical field h, . We determine the spin-wave velocity, v = 2.49(1), as well as the gap A =
0.4107(1)J.
PACS numbers: 75.10.Jm, 75.40.Mg
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It is by now well established both experimentally [1]
and theoretically [2—7] that the S = 1 antiferromagnetic
chain has a gap, E, to a triplet excitation above a sin-
glet ground state. Thus the magnetization M remains
strictly zero up to a critical field h, = A. For the quasi-
one-dimensional system NENP the critical field is found
to be about 10 T [8] for a field applied along the sym-
metry axis. The behavior of M(h) just above h, has
been the subject of some theoretical work [9—11]. The ex-
isting experimental results [12] appear to be dominated
by extraneous effects such as an off-diagonal alternating
component of the gyromagnetic tensor [13], interchain
coupling, anisotropies, and impurities.

This problem can be solved using a boson quasiparticle
model involving triplet magnons with repulsive interac-
tions for parallel spins [11]. This model predicts that
h, = E. (We set the Bohr magneton and g factors to
1.) At this field the "rest-mass energy" of the magnons
is exactly canceled by their Zeeman energy and one-
dimensional Bose condensation occurs. What prevents
a catastrophe from occurring at h, is the intermagnon
repulsion which governs the behavior of M(h) above h, .
To calculate M(h) we need to calculate the energy E(M)
of a very dilute system of M polarized magnons in their
ground state. M(h) is then found by inverting the equa-
tion h = dE/dM It was argu. ed in Ref. [11] that the
behavior of E(M) is the same as for a system of nonrel-
ativistic noninteracting fermions:

Here v is the velocity, determined from the single magnon
dispersion relation at low energies:

~o(k) = 4+ v (k —vr) /2E+ O([k —~] ), (2)

L is the length of the system, and k~ is determined from
the particle number:

This gives E = M(4 —h) + (v~)2Ms/6&L2 + O(M4)
and hence

M/L = Q(h —A)2A/7rv, (4)

up to terms of higher order in h —A.
This formula was first given based on a noninteract-

ing fermion model of magnons [9]. It was later argued to
also arise from an interacting boson model [11]sufficiently
close to h„and hence to be exact. It is expected to be
valid for very general short-range repulsive interactions
between the spin-polarized magnons. It should hold for
arbitrarily weak interactions for long enough chains. The
reason is that when the average intermagnon spacing is
very large compared to the range of the repulsive interac-
tion the multimagnon wave function, iIIM (xi, x2, . .., xM),
can be approximated by a free fermion (Bloch) wave func-
tion multiplied by the sign function e(xi, xz, ...xM) which
has the value +I and changes sign whenever two particles
are interchanged:

&M(», x~, ",xM) = 1
M

)
e(xi x2 " xM) ) 4i (x., )42(x', ) 0M (x' )sg»

s (i&" iM) i—i

Here P denotes the permutation and sgnP the sign of
the permutation. Q, (x) is a single-particle noninteract-
ing wave function depending on the wave vector k, . 4M
is symmetric as required by Bose statistics, is a solution
of the noninteracting Schrodinger equation almost every-
where (i.e. , except where two or more particles intersect),

and vanishes whenever two or more particles come to-
gether. As such it is expected to become exact in the
dilute limit and hence to give exactly the magnetization
ash~ h, .

To simulate the M-magnon problem in the dilute
regime we need a length L )) M( where ( = 6 is the
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correlation length or the approximate range of the inter-
magnon interaction. In practice it appears that L & 30M
is required. Before last year, the longest chains that had
been studied accurately had L = 32, so good results were
only available for a single magnon and it was impossi-
ble to study magnon interactions. Thanks to a break-
through in the real-space renormalization group tech-
nique made by White [2] it is now feasible to study chains
of length 100 or longer using a density matrix renormal-
ization group (DMRG) approach. We will present results
here on chains of length up to 100 containing up to three
magnons. White and Huse [5] obtained related numerical
results independently. We analyze our results in a difer-
ent way which establishes Eq. (4). Our results indicate
quite convincingly that the lowest-energy two or three
magnon state has the form discussed above; namely, the
lowest-energy free fermion wave function multiplied by
the sign function. We establish this result in two ways.
First, we study S'(x) = P. ~ 6(x —x~), where x~ is the
position operator for the jth particle, showing that it has
the expected form

(S'(x)) = M dx2dxs . dx~ ~@~(x,x2, xs, . . ., x~)
~

.

Second, we study the Bnite-size dependence of the energy
of the multimagnon ground state, showing that it behaves
as

E(M) = ) u)(k, ). (7)
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Holding M fixed and taking L —+ oo, the k, 's are O(1/L)
so the above formula gives E(M, L) = M(A —h) +
a(M)/L2. The corrections to Eq. (7) from intermagnon
interactions are expected to be O(I ). This power of L
can be most easily understood in the M = 2 ease. The
wave function contains a L normalization factor but
is O(L 2) over the entire region where the interaction is
non-negligible since it vanishes proportional to k(xq —x2)
with k of O(L ). The power L s arises from squaring
the wave function and picking up a factor of L from the
integral over the center-of-mass position. We verify that
the corrections to Eq. (?) are indeed of this order.

Implementing the DMRG optimally requires studying
chains with open, rather than periodic, boundary con-
ditions. Such chains have S = 1/2 excitations localized
near the ends which have been the subject of a num-
ber of experimental and theoretical studies [14]. For our
purposes they are just a minor annoyance. They are
also found to have repulsive interactions with the bulk
magnons for parallel spins. Thus the magnon wave func-
tions essentially obey vanishing boundary conditions at
the ends, with additional corrections of O(L s) to the
energy, Eq. (7), from the magnon-end excitation interac-
tions. We also considered more general boundary condi-
tions for the magnon wave functions. These were found
to change the energy only to O(L s) since they lead to

v7T
E~+g(L) —Eg(L) = (2 —h)m+ 2 ) n,

i=1

+O(L '), n, = i. (8)

We test this formula below for m = 1, 2, and 3.
The 1 state becomes degenerate with the ground

state in the thermodynamic limit, exponentially fast with
L, and we shall therefore use it as the reference state and
calculate energy gaps with respect to this state and not
0+, as already implied in Eq. (8). We have calculated the
gap as a function of chain length between this state and
three of the low-lying states using density matrices of the

negligible changes in the wave function.
The DMRG method for open chains leaves only two

good quantum numbers: the total S' component, S&,
and the parity, P. We need to determine the parity for
low-lying states with a given S&. We shall only be con-
cerned with chains of even length. For these chains the
ground state is a singlet with even parity, 0+. Above the
ground state is an exponentially low-lying triplet, 1
In the thermodynamic limit the triplet and the singlet
become degenerate and the ground state fourfold degen-
erate. This spectrum can be seen to arise from the two
S = 1/2 end excitations forming either an odd parity
singlet or an even parity triplet, in addition to an over-
all parity Hip coming from the rest of the ground state.
This parity Hip can be understood from the valence bond
solid state [7] where we draw two valence bonds emanat-
ing from each site. These valence bonds represent singlet
contractions of pairs of S = 1/2 spins so they have a
directionality associated with them. When we make a
parity transformation we flip the orientation of an odd
number of valence bonds resulting in a (—) sign. Thus,
the parity, Pz, of a state with no magnons present is (+)
if the end excitations combine into the singlet and (—) for
the triplet. The parity of higher excited states, contain-
ing one or more magnons, is a product of three factors,
P@Pg~P Pconta. ins a contribution of (—) from each
magnon present. This is because the magnons are created
and annihilated by the staggered magnetization operator,
and this changes sign upon switching even and odd sub-
lattices. Pg~ is the parity of the spatial wave functions of
the magnons. For instance, for a single magnon, the wave
functions, g;, in Eq. (5) are g, = g2/(L —1) sink, x,
k, = 7m, /(L —1), with n, odd for even parity and n, even
for odd parity. We take 0 & x & L —1 and parity will
therefore take x into L —1 —x.

For a chain with open boundary conditions the lowest

lying state of a given magnetization, M, will have M =
m + 1, where m is the number of magnons present and
the additional term, 1, corresponds to the end excitations
forming a triplet. In order to minimize the intermagnon
repulsion, the wave function for large L takes the Bloch
form of Eq. (5), with @, as above and n, = i, in order
to satisfy vanishing boundary conditions. Thus Eq. (1)
becomes
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TABLE I. The spectrum of the L = 100 open 8 = 1 anti-
ferromagnetic Heisenberg chain.

gP
1
2+
3
4+

—E
138.940 086
138.522 461
138.085 57
137.603

size 243 x 243 keeping 81 eigenvectors of these matrices
at each iterations. For each of these states we have also
calculated (S;) and (S, S,+i) along a L = 100 site chain
using a finite lattice method [2]. A brief summary of our
results is shown in Table I.

The lowest-lying M = m+ 1 = 2 state corresponds
to a state with the end excitations in the 1 state and
one magnon present. This state has therefore parity (+),
since P~ = (—), Ps~ = (+), and P~ = (—). We approx-
imate the wave function as consisting of two factors exist-
ing in different Hilbert spaces: a factor from the end exci-
tations and a factor, 4~, corresponding to the m-magnon
wave function. From the above discussion we see that for
a single magnon the magnon part of the wave function,

, becomes 4i = g2/(L —1) sinktx, ni = 1. From
Eq. (6) we then see that (S;)2+ —(S;)i- ——I i sin kix,
which is shown as the solid line in Fig. 1. Here the sub-
traction of (S;. ) t- essentially removes any contribution
from the end excitations. An excellent agreement is evi-
dent. Also shown in Fig. 1 is the local bond energy e,
(S; S,+i)2+ —(S, .S,+i)z-. The dilute boson model pre-
dicts an energy density, e(x) 4 P i b(x —x~) ignoring
the O(L ~) kinetic energy. Therefore e(x) should be pro-
portional to S'(x) in Eq. (7), the proportionality factor

being the gap, A. In Fig. 1 this prediction is shown as
the dashed line. From Eq. (8) we can now extract values
for the gap, 4, and the velocity, v. The fit of 42&(L) =
E2+(L) —Ei (L-) by Eq. (8) is excellent, and we obtain
62'(L) = 0.4107(1) + 74.7(4)(L —1) 2 +. O([L —1] s),
with y = 4.55. We see that 4 = 0.4107(l), v = 2.49(].).
The value of 6 is in excellent agreement with what was
previously obtained [2,5]. The value of v is in good agree-
ment with the value v = 2.46 that can be extracted from
exact diagonalization [6], and the value v 2.36 obtained
from 1/S expansions [15]. It is also in good agreement
with the experimental results on NENP [16], v 2.45.
The coefficient, 74.7(4), in front of the (L —1) 2 term,
which determines v, differs marginally from what was ob-
tained by White [2], (67.9), due to the use of a difFerent
polynomial form.

The lowest-lying 2-magnon state has parity (—) since
P@ = (—), Ps~ = (+), P = (+), and total mag-
netization M = m + 1 = 3. The magnon part
of the wave function is 42 = i &[sinkixisink2x2-
sink]x2slnk2xi]e(xi, xq) with ni ——1, n2 = 2. Note that
under parity x, ~ L —x, —1, sin kix, is even, sin k2x, is
odd, and e(xt, x2) is odd, resulting in Ps~ = (+). We
now obtain (S;)s- —(S;)i- ——z i(sin kix+sin k2x},
which is shown as the solid line in Fig. 2. The dashed
line represents the theoretical prediction for the local
bond energy which is also shown in Fig. 2. Again we
fit Esi(L) = Es (L) —Ez -(L) by Eq-. (8) and we obtain
43$ (L) = 0.823(1)+359(5)(L—1) +O([L —1] ). The
constant term should be 2A, in good agreement with the
value of 6 obtained above. Since in this case we expect
ni = 1, n2 = 2, and therefore Qn, = 5, the coefficient
in front of the (L —1) 2 term should be 5 times greater
than what we found for the 2 level. Clearly this is the
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FIG. 1. The open circles represent (9;)~+ —(S;), . The
solid line is the expression given in the text. Also shown, by
triangles, is (S, S,+i)2+ —(S, . S,+z)z-. The dashed line is
the prediction for this local bond energy.

FIG. 2. The open circles represent (8;)3 —(S;), . The
solid line is the expression given in the text. Also shown, by
triangles, is (S, S,ii)3 —(S, S,+i), . The dashed line is
the prediction for this local bond energy.
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excitations. The lowest energy state for given M has the
Bloch form of Eq. (5), implying the validity of Eq. (4).
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FIG. 3. The open circles represent (S,*)4+ —(&;)&—.
solid line is the expression given in the text. Also shown, by
triangles, is (S, S,+i)4+ —(S, S,+i), . The dashed line is
the prediction for this local bond energy.

case: We obtain P n2 = 4.80(6), and the only values of
n, consistent with our results are indeed ni = 1,n2 = 2.

The three magnon state with M = m + 1 = 4 has
parity (+) by the same arguments as above. The wave
function now has six terms and we obtain (S;)4+—
(S;)&- ——i &{sin kix+sin ksx+ sin ksx), with ni =
1, n2 ——2, n3 ——3. This expression is shown as the
solid line in Fig. 3, along with the numerical results for

(S;)4+ —(S;)i- and the local bond energy (S, S,+i)4+—
(S, S,+i) i-. The dashed line is the prediction for the
local bond energy. Again good agreement is evident be-
tween theory and the numerical results. Fitting the en-
ergy gap to Eq. (8) we find that the (L —1) ~ term now
has a coefficient of 1030(150). Thus in this case, if we
use the value of v determined above, P n, = 14(2). This
is only consistent with the values ni ——1,n2 ——2, n3 —3.
We also performed some calculations for L = 60; these
show that effects from the end excitations clearly dimin-
ish as L is increased.

In summary, we find that the numerical results are
in excellent agreement with Eq. (8) with v = 2.49(1),

0.4107(1). The magnons behave as bosons with
repulsive interactions among themselves and with the end
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