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Finite Temperature Properties of the Spin- —Heisenberg Antiferromagnet
on the Triangular Lattice
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We have studied the spin-2 Heisenberg antiferromagnet on the triangular lattice by high temper-
ature series expansions. Prom an analysis of the antiferromagnetic structure factor and correlation
length, we deduce that the ground state has small but nonzero long range antiferromagnetic order.
We also determine the temperature dependence of the uniform susceptibility and the specific heat.

PACS numbers: 75.10,Jm

The behavior of frustrated quantum-spin systems in
two dimensions is of considerable interest, particular at-
tention being given to whether quantum Huctuations de-
stroy the long range magnetic order (LRMO) which is
generally present in the classical ground state. The sim-
plest frustrated quantum-spin system is probably the
spin-2 Heisenberg antiferromagnet (HAF) on the trian-
gular lattice, which was the original model for Ander-
son's proposed resonant valence bond state [1]. More re-
cently Kalmeyer and Laughlin (KL) [2] proposed a differ-
ent ground state for this model, also without long range
magnetic order but with chiral symmetry breaking. How-
ever, Huse and Elser [3] found variational states with a
large antiferromagnetic order parameter, which had sig-
nificantly lower energy than the KL states, which sug-
gests that the ground state may have LRMO. This possi-
bility is also consistent with spin-wave theory, for which
the lowest order approximation [4] predicts the staggered
magnetization to be about 48% of the classical value and
the next order correction actually increases this a little
[5]. Exact diagonalization of small clusters [6, 7] sug-
gested no LRMO, while two recent calculations, which
included the cluster with N = 36 sites [8, 9], have come
to opposite conclusions about the existence of LRMO.
Another useful approach is series expansions. One of us
(R.R.P.S.) and D. Huse [10] investigated the HAF on the
triangular and kagome lattices by introducing an Ising-
type anisotropy into the Hamiltonian. Ground state
properties were determined by expanding away from the
ground state in the Ising limit. Extrapolation of the re-
sults to the Heisenberg model indicated that the ground
state is close to the critical point for antiferromagnetism,
so if there is long range order, it is very small compared
with the classical value.

In this paper we investigate the spin-2 HAF on the tri-
angular lattice by high temperature series expansions. It
seems a particularly useful approach for the HAF on the
triangular lattice, since other methods have been rather
inconclusive and quantum Monte Carlo simulations have
sign problems [11]. Furthermore, there is at least one
corresponding experimental system, NaTiOq [12]. Ex-

z = ) s, . s, , (1)
(z j)

where the S, are spin-2 operators and the sum is over
all nearest-neighbor (NN) pairs of sites, the NN interac-
tion, J, having been set to unity. In the classical ground
state, the spins form three sublattices, with the spins in
different sublattices lying at 120' to each other [4, 5]. The
antiferromagnetic ordering wave vector Q is at the corner
of the hexagonal Brillouin zone of the triangular lattice,
so the antiferromagnetic structure factor is given by

S(Q) = ) (S;S;)exp[i+ (R, —R, )]. (2)

The phase factors are unity if the two sites are on the
same sublattice and —

2 if they are on different sub-
lattices. The antiferromagnetic correlation length, (, is
given by

) (R,, —R., ) (S;S;)exp[i@ (H, —,)],

(3

periments are done at finite temperatures, so it is im-
portant to have accurate results for the temperature de-
pendence of measurable quantities. By contrast, most
of the earlier calculations just investigated ground state
properties. Although there is no long range magnetic
order at finite temperature for two-dimensional systems
with continuous symmetry, the temperature dependence
of certain quantities, discussed below, indicates whether
the ground state is ordered [13, 14]. The aim is to com-
pute enough terms in the expansion to determine these
quantities down to temperatures where the asymptotic
low temperature behavior has set in. Our results imply
that there is a sm, all amount of magnetic order so the
system is close to a quantum critical point as found by
Singh and Huse [10],but our calculations indicate that it
lies just in the regime with LRMO. We also determine the
temperature dependence of the susceptibility and specific
heat.

The Hamiltonian is
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TABLE I. For each quantity, A, we define coefficients, a„, by A = p ~ (~) . The table shows the values of the
a~, which are all integers, for various quantities: S(Q) is the antiferromagnetic structure factor, ( is the antiferromagnetic
correlation length, y(0) is the uniform susceptibility, and E is the energy per site.
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X(0)

0
1

—12
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18000

—254016
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—109168128
818042112

17982044160
778741928448

—90462554542080
829570427172864
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0
9

18
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—3240
—49176
1466640

13626000
—1172668032

—75256704
1392243773184

—18426692664576
—2213592367094784

which is normalized to agree with the Ornstein-Zernicke
form, S(q) = S(Q)/[I + (2(q —Q)2], for q —Q small.
In addition, we have generated series for the energy per
spin, E, and the uniform susceptibility, y(0), defined by
X(0) =T 'E, (S;S;) .

Using the cluster method [15] we have generated se-
ries for S(Q),(,Ty(0) and the logarithm of the par-
tition function up to order 13 in powers of P—:1/T.
The thirteenth order calculation, which took about 12
days of CPU time on an IBM RS6000 workstation, in-
volved clusters of 35 714 different topologies with a total
of 2269064363 embeddings on the lattice. Writing the
series for 4S(Q), 4(2, y(0), and 4E as P„a„(P/4)"/n!,
then the coefBcients a„are integers and are given in Ta-
ble I. The series were analyzed by the method of Pade
approximants [16].

We found that the series for the logarithm of S(Q) and
( behaved better than the series for the quantities them-
selves. In Fig. 1 we plot results for the structure factor
on a double logarithmic scale obtained by analyzing the
series for 1n[4S(C})] [17]. For this plot a Euler transfor-
mation was made to a new variable u = 1/(T+ 0.08) and
the Pade analysis was done on the series for u. However,
the results in this and the other figures do not depend
greatly on the use of the Euler transformation. Figure 1
shows that the structure factor stays small for tempera-
tures well below the mean field transition temperature,
T, = 0.75, but then appears to grow quite rapidly at
lower temperatures. The slopes of the curves increase
(in magnitude) as the temperature is lowered, consistent
with a weak exponential divergence as T —+ 0. The inset
shows a plot of the correlation length, which is also very
small even well below T

In order to analyze the series, we need to discuss fur-
ther the expected behavior at low temperatures. If there
is long range order, the correlation length should grow as

[13, 14]

( = AqT* exp(Cq/T) [1+O(T)] . (4)

For a collinear antiferromagnet, C~ is just 2' times the
stiffness coefficient p, for twisting the spins [14]. How-
ever, here, the classical ground state is noncollinear and,
as a result, there are two distinct stiffnesses [18]. The
factor, Ct, in the exponential in Eq. (4) has been deter-
mined for the classical model by Azaria et at. [19] who
find C~ = 6.994S2. They also find the power of T in Eq.
(4) to be x = —0.5. In general, the structure factor varies
with the correlation length as S(Q) ( ". Here il = 0
[13,14], so
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FIG. 1. A double logarithmic plot of S(Q) against T The.
data were obtained from Pades for In[4S(C})]after performing
a Euler transformation to the variable u = I/(T + 0.08). The
difFerent curves refer to difFerent Pade approximants: [L, M]
means that the series is represented by an Lth order poly-
nomial in the numerator and an Mth order polynomial. in
the denominator. The inset shows results for the correlation
length (.
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S(Q) = AsT" exp(2C~/T) [1 + O(T)] .

Note, however, that, in general, y g 2x because the re-
lation S(Q) ~ (2 only holds for the leading exponential
variation [14]. It would be very instructive to determine
the value of y analytically for the HAF on the triangular
lattice. To determine C~, in Eqs. (4) and (5) it is use-
ful to consider Tln[S(Q)] because this tends to 2C~ as
T ~ 0. For the correlation length, the power law prefac-
tor in Eq. (4) is 2: = —0.5 [19] so this can be incorporated
by considering T ln(T(2), which also extrapolates to 2'
for small T. For a system in its classical ground state
[19], 2C~ = 2 x 6.994 x Sz = 3.497. In fact, 2C~ will
be reduced below this value because of quantum fluctu-
ations. If quantum fluctuations destroy LRMO in the
ground state, then Cg = 0.

Figure 2 plots [17] Tln[4S(Q)] and Tin(16T(2/3)
against T. The Pade approximations for the structure
factor are the better behaved and converge down to a
temperature of about 0.15, which is 0.2TMF. We be-
lieve that this is low enough for the system to show
the asymptotic low temperature critical behavior, since
Monte Carlo simulations on the corresponding classical
model [20, 21] show that the low temperature regime sets
in at about T = 0.351; . If there is no crossover to
different behavior for T & 0.15, then the data for both
T ln[4S(Q)] and T ln(16Tg~/3) extrapolate to a value of
about 2C~ = 0.2 as T —+ 0, apparently nonzero but far
below the classical value of 3.497. The results for the cor-
relation length break down at a somewhat higher temper-

ature, but this plot has the advantage that the expected
power law prefactor is incorporated. It is therefore grat-
ifying that both the structure factor and the square of
the correlation length appear to extrapolate to about the
same value as T ~ 0.

Recently there has been much interest in quantum
critical (QC) behavior in antiferrornagnets with stiffness
small compared with J [14, 22, 23]. It has been argued
that there may be an intermediate temperature region in
these systems, where the magnetic behavior is dominated
by the T = 0 quantum critical point and various physical
quantities have power law behavior [14, 22, 23] in T. For
the square lattice, evidence for QC behavior has been
found [23] in the range 0.3 & T & 0.6. Since the stiffness
for the triangular lattice appears much smaller than J,
one might expect a wider QC regime for this case than
for the square lattice. However, we do not find evidence
for QC behavior down to T = J/3, perhaps because the
correlation length is still only about one lattice spacing
at this temperature; see the inset to Fig. 1. It is inter-
esting to speculate on whether vortices [21] might play a
role in reducing the range of the QC regime.

In Fig. 3, we show results for the susceptibility and
specific heat. In both cases, the series converge down
to temperatures below the peak. For the suscepti-
bility, the zero temperature limit is rather uncertain,
but the diagonal Pades give the following estimates:
[4, 4] 0.184; [5, 5] 0.465; [6, 6] 0.199; [7, 7] 0.216. The
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FIG. 2. T in[48(Q)] against T. The data were obtained
by performing a Euler transformation, changing variables u =
1/(T + 0.08), and doing a Fade analysis. The results tend to
the value 0.75 (= T, ") as T ~ oo and appear to extrapolate
to a value of about 0.2 as T —+ 0. The zero temperature limit
is 2', where Cg is the coefficient of 1/T in the exponential
divergence of the correlation length; see Eq. (5). The inset
shows Tin(16T(' /3) against T The data were obtained b. y
performing a Euler transformation, changing variables to u =
1/(T+ 0.2), and doing a Pade analysis. The results tend to
the value 1.0 as T —+ oo and appear to extrapolate to a value
of about 0.2 as T —+ 0, the same as for the structure factor as
expected.
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FIG. 3. Results for the uniform susceptibility (x 4),
against T, obtained by doing the Euler transformation u =
1/(T + 0.08) followed by a Pade analysis. At high tempera-
tures, 4g(0) ~ 1/T. At lower temperatures there is a broad
peak at T 0.35 while the zero temperature limit appears to
be between about 0.20 (see text). The inset shows results for
the specific heat, C, obtained after doing a Euler transforma-
tion to u = 1/(T+0.20). There is a peak at T 0.55, and, of
course, C —+ 0 as T ~ 0. The unphysical spike which appears
on the curves at T 1 for the [6/7] and [5/8] Pades (but not
for the [5/7] Pads) is due to the presence of a pole and a zero
close by. Since the curves for all three Pades otherwise agree
very well with each other down to T 0.2, we believe that
the results are reliable down to this temperature if the spike
is ignored.
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[5, 5] result seems to be much too high so, based on the
other results, we estimate a zero temperature limit of
about 0.2. The specific heat vanishes, of course, at T = 0.

To conclude, our results indicate that the spin-2 HAF
on the triangular lattice has small but nonzero LRMO.
The only possible escape from this conclusion is if there
is crossover to some other behavior at extremely low tem-
peratures. If this is the case, other methods would also
have difficulty in determining the asymptotic low tem-
perature behavior. It might be possible to drive the sys-
tem through the zero temperature critical point into the
quantum disordered state by adding an antiferromagnetic
second neighbor coupling. We have also accurately de-
termined the temperature dependence of the specific heat
and uniform susceptibility down to temperatures below
the peaks in these quantities. Our results are signifi-
cantly more precise in this region than those of Imada
[6] who used a different technique. Experimental results
on NaTi02 for y(0) [12] show a gradual increase as the
temperature is reduced, which may correspond to the in-
crease shown in Fig. 3 at temperatures above the peak,
then a rapid increase at low T, apparently due to irnpu-
rities. Neutron scattering did not show a strong antifer-
romagnetic Bragg peak, consistent with our results, but
it would be interesting to look for scattering from fluctu-
ations in the staggered magnetization, which is propor-
tional to S(Q) and could therefore be compared with our
results.
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