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The subgap conductivity of a normal-superconductor (NS) tunnel junction is thought to be due
to tunneling of two electrons. There is a strong interference between these two electrons, originating
from the spatial phase coherence in the normal metal at a mesoscopic length scale and the intrinsic
coherence of the superconductor. We evaluated the interference effect on the transport through
an NS tunnel junction. We propose the layouts to observe drastic Aharonov-Bohm and Josephson
eÃects.
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Quantum phase coherence in solids manifests itself ba-
sically in two ways. First, there is an intrinsic coher-
ence in the superconducting state. In superconductors,
the phase is indeed a macroscopic variable. This can be
observed in a variety of interference experiments, for ex-
ample, with tunnel junctions [1]. Second, even in a nor-
mal metal electrons are coherent at a mesoscopic length
scale. Interference between the electrons in a normal
metal gives rise to a set of phenomena which consti-
tutes the subject of a new branch of condensed matter
physics [2,3].

At the normal-superconductor (NS) interface between
a normal metal and a superconductor, these two sources
of coherence may interplay. Very recent experiments [4]
show how interesting such an interplay may be. In case of
NS boundaries of a high transparency, the phenomenon
of Andreev reflection [5] seems to be responsible for the
peculiarities observed.

In the present paper we focus on the opposite case of
a tunnel NS (N-I-S) interface. It is well known that an
electron with energy less than 4, 6 being the supercon-
ducting energy gap, cannot tunnel to the superconduc-
tor and therefore the transport through the junction is
strongly suppressed at voltages below the gap [1]. On the
other hand, two electrons can enter the superconductor
converting into a Cooper pair since this process costs no
energy. Such two-electron tunneling [6,7] determines the
subgap conductivity of the junction.

It has been discussed recently [8] that the rate of this
two-electron process is often determined by the interfer-
ence of the electron waves on a space scale given by
the coherence length, either in the normal or the su-
perconducting metal. It was shown in [8] that interfer-
ence plays an important role in junction geometries of
present-day interest. The elastic mean free path in the
electrodes on both sides of the tunnel junction is usu-
ally much smaller than the junction size due to bound-
ary scattering on small length scales. As a result, two-
electron tunneling in such geometries occurs between

states of complex interference structure; hence the usual
description in terms of plane electron waves fails. In-
stead, the diff'usive motion should be considered of two
electrons which are coherent over a distance given by
LT ~ = gD/max(eV, T), gD/4, in the normal metal
and the superconductor, respectively, where D is the dif-
fusion constant [9]. This has drastic consequences for the
subgap conductance, which can be enhanced by several
orders of magnitude, compared to the value obtained by
assuming ballistic electron motion in the electrodes. The
enhancement of the subgap conductance is found again
in the present paper.

The importance of interference effects motivates us to
explore how agents which act on the phase will inHuence
the subgap conductivity. Indeed we find the conditions
under which a pronounced Aharonov-Bohm and Joseph-
son effect can be observed. Since we consider the low-

voltage subgap conductivity, we assume that T, eV (( L.
Under these conditions the coherence length LT is much
larger than the one in the superconductor, I~. Since the
total subgap conductivity can be expressed as the sum
of the interference contributions from the normal metal
and the superconductor [8], we therefore concentrate on
the interference in the normal metal.

The N-I-S interface is described by the Hamiltonian
H = H~ + Hg + HT, where H~ and Hg refer to the
normal and the superconducting electrode, respectively.
The tunnel Hamiltonian HT is given by the usual form
HT = Pk tg~ak b~, + tz b ak, ~. Here, opera-

tors ak, b~ correspond to the normal and the super-
conducting electrode, and tk~ are the tunnel matrix el-

ements which we take to be spin independent; the sum
is taken over momenta k, p and spin cr =f, $. Second
order perturbation theory in HT yields the lowest order
contribution to the amplitude of two-electron tunneling.
The a operators appearing in this amplitude remove two
electrons from the normal metal electrode with energy

(k and Q . The amplitude thus consists of a sum over
intermediate states in the superconductor

0031-9007/93/71 (10)/1625 (4)$06.00
1993 The American Physical Society

1625



VOLUME 71, NUMBER 10 PH YSICAL REVI EW LETTERS 6 SEPTEMBER 1993

The matrix elements between !N) and !N —2) connect
states differing by two electrons. In coordinate repre-
sentation they can be expressed in terms of the Fourier
transform F&t&(rI, rz, u) of the usual anomalous Green's

function iF&&(r~, t; r2, 0) = (N!TQ&(r~, t)@&(rz, 0)!N—2).
This is the expectation value of the time-ordered prod-
uct of two Heisenberg field operators, which can be ex-
panded in terms of the operators bt . Since we assume
that T, eV « 4, we consider only (~, (A, && 4 and find

Akt k ~
= 2~ dry dr2dr ~ drzgk (r q) QI, I (r2)

xt (rl, ry)t (r2, r2)E)g(ry, r2, td —0), (2)

where QA, (r) denotes an eigenfunction of an electron in
the normal metal; primed space arguments refer to the
superconductor. In a disordered material, gJ, (r) and

F&&(rI, rz, w) are in general complicated functions de-

pending on the realization of the disorder. Since we are
interested only in the interference occurring in the nor-
mal metal, we perform an average of (2) over states in
the superconductor. This may be done along the lines
of [10]. Since tunneling occurs only between neighboring
points, coordinates r and r' coincide; the product of two
tunnel amplitudes will give the normal state conductance
g(r) of the tunnel interface per unit area such that the
total conductance Gz = jd r g(r) Th.e result reads

5
Akt'k g

= —
2C V~

where P(r) is the phase of the superconducting conden-
sate and v~ the density of states in the normal metal.
The rate for two-electron tunneling as a function of the
applied bias voltage V is obtained by applying Fermi's
Golden Rule. To obtain the current we have to sum the
tunnel rates in both directions. As a result we find

vr'I-
I(V) = d rqri r2g(rq)g(r2) expi[P(rq) —P(r2)] W[f(w/2 —eV) —f(w/2+ eV)][P (rq, r2) + P (rq, r2)] .

Here f is the Fermi distribution for electrons in the nor-
mal metal. Equation (4) is the central result of our pa-
per, which clearly shows the interplay between phase co-
herence in a superconductor and a normal metal, con-
nected by a single junction [ll]. The intrinsic coherence
of the superconductor is reflected by the appearance of
the phase difference P(rq) —P(r2). In the normal metal,
the two incoming electrons undergo many elastic scat-
tering events in the junction region before they tunnel
through the N-I-S interface, leading to interference on a
length scale given by I~ [8]. These interference effects
have been taken into account by averaging the rate in
the standard way [3] over possible scattering events. The
result (4) therefore contains the sum of two Cooperon
contributions P+(r, r'), which obey the equation [12]

(—hD[V' —i2~A(r)/C c] —i~)P (r, r') = 6(r —r'),
(5)

where A is the vector potential and 40 = hc/2e the flux
quantum. From this equation it is clear that the result
does not only depend on properties of the junction (via
Gz ), but also on its surroundings over a distance Lz, due
to the interference occurring on this length scale [9].

As a simple example we calculate first the subgap con-
ductance corresponding to a layout where a semi-infinite
normal wire of thickness d &( Lz- is connected to a super-
conducting electrode by a tunnel junction. In this case,
the only contribution from the spatial integrations in (4)
originates from the tunnel junction at rq ——r2 ——0. The
solution of (5) for a wire yields P+(0, 0) = 1/dg i~hD. —
It leads to

G;„=8vr ~ (1 —2V2)(( —2)R, ,G~ = 53.8R„,Gz,
(6)

(4)

where R„, = Lz /e2v~Dd is the resistance of the wire
per correlation length L~ The ex. plicit dependence on
Lz. arises after integrating the Cooperon together with
the Fermi factors over ~ in Eq. (4). This dependence
causes an enhancement of the subgap conductance due to
interference in the normal wire, as discussed in [8]. Qual-
itatively, one may interpret this enhancement as induced
superconductivity in the normal wire over the length Lz-.

Interference effects in a mesoscopic system threaded
by a magnetic flux lead to the Aharonov-Bohm effect:
the total resistance depends periodically on the applied
flux [13]. A similar effect can be observed with the layout
depicted in Fig. 1(a), where a small loop with circumfer-
ence L is inserted into a wire at distance t of the junction.
The resistance of the loop is denoted by BI., B~ is the re-
sistance of the piece of wire between loop and junction.
The loop is threaded by a magnetic flux 4. The conduc-
tance (4) at zero temperature (Rl. , Rt « Ro, ) reads

Gioop = 4~ Gz ! Rt +2( Rg
! (7)

sin ere /C 0 9
This result is plotted in Fig. 2 (upper curve). It shows
the usual h/2e periodicity [13] related to the Cooperon
Moreover it diverges each time when C = neo for integer
n At finite tem.perature the result (6) restricts the max-
imal conductance at zero flux by the value 53.8R, ,G7.
But even at zero temperature, when R„, diverges, (7)
will still be finite, due to the penetration of magnetic
flux in the wires that constitute the loop. This pen-
etration leads to a shift in the Cooperon energy w —+

cu+ia2(hD/4L2)(2vrc/@c)2 where a = 8;„/S~ p is the
ratio of the area of the wire and the loop. As a result we
obtain instead of (7)
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8vr G~Rg[1+ 2(l/L) sin vr4/4c]~
(7m@/2@p)(cos 2+4/4p + 1) + (2 sin mC'/@p) [1+2(l/L) sin mC/@p]

(8)

Thus the divergencies are removed as can be seen in
Fig. 2 (lower curve), where the result is plotted, taking
l/L = 0.5 and n = 0.1. We note that the flux dependence
presented here is caused by the fact that the dominant
transport mechanism under subgap conditions consists of
a phase-coherent transfer of two electrons.

We now turn to a different geometry [Fig. 1(b)], where
instead of a ring a fork is attached to the wire, such that
we have two tunnel junctions to the superconductor at
different positions r~ and r2. The subgap conductance
will be determined not only by the flux threading the
closed area between the fork and the superconductor, but
also by the magnetic Beld distribution in the supercon-
ductor. Let us consider the curves Civ and Cs connecting
the junctions 1 and 2 in the normal metal and the super-
conductor, respectively. The effect will be governed by
the phase 8 = P(ri) —P(r2)+ (2e/hc) f& A dx. In order
to obtain a gauge-invariant expression for 8 we use the
relation V&( —(2e/hc)A = p, /5, where p, is the momen-
tum of the superconducting condensate. In this way we
arrive at 9 = 2vr@/@p + f~ (p, /li) dx, with 4 the flux
penetrating the closed loop formed by C~+ Cg. This re-
sult does not depend on the choice of Cg. It reflects the
dependence of 8 on the penetration of the magnetic Beld
as well as on the vortex positions in the superconductor.
The effect can be used to monitor these positions. In-
troducing the conductances G~, Gq of the junctions we

] o~~ain

Gf~rk = 53.8B„, Gq + G2 + 2G&G2 cos 6

when LT is larger than the size of the fork. The con-
ductance Gg, k thus combines the phase coherence in the
normal and the superconducting metal.

If we consider tunneling to a superconductor of Bnite
size, the transport will be influenced by charging effects,
if the total capacitance C of the superconducting island is
small enough, such that the charging energy E, = e2/2C
is of the order of 6 [7,14]. We will restrict ourselves
to the case 4 ) E,. In this case the transport to the
superconductor will be due to two-electron processes. We
will present a simple relation between the rate for these
processes and the current which would flow in the absence
of charging effects. The transfer of two electrons to the
superconducting island increases its electrostatic energy
by an amount E2, . This energy can be changed with the
help of an additional potential V~ applied to the island;
we assume that Eq, « E„A. The first electron entering
the superconductor as a quasiparticle then increases the
electrostatic energy of the island by an amount E,. The
energy of the intermediate states in the superconductor
will therefore be shifted by this amount, leading to a
difFerent amplitude Ai, li, i = [F(E,)/F(0)]Xi, li, i, with

4A 4+E
F(E) = arctan

Q2 E2 (10)

(b)

The rate is then given by 2eI' = [F(E,)/F(0)] I(E2, /
2e).

Finally we investigate a Josephson-like effect, which oc-
curs in the geometry depicted in Fig. 1(c). In this layout

3.0

C)
2.0

C4I—

1.0
C3

(c)

FIG. 1. Three geometries discussed in the text: (a)
one-dimensional normal wire containing a loop connected to
a superconducting electrode by a single junction; (b) fork ge-
ometry connected to the superconductor by two junctions; (c)
fork geometry connected to two different superconductors.

0.0
3.00.0 1.0 2.0

&t&/&/& p

FIG. 2. Subgap conductance at zero temperature for the
geometry of Fig. 1(a), as a function of flux. Curves corre-
spond to Eqs. (7) (upper curve) and (8) (lower curve) in the
text.
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a normal fork is connected to two different superconduc-
tors, to which a small voltage difference eVs is applied.
The phase difference between the two superconductors
and hence between the junctions at the extensions of the
fork will increase linearly with time: 8 = eVst/h S.ub-
stituting this phase difference into Eq. (9) we obtain

GJ = 53.8R, , Gr + G~+2GiG2cos(eVst/h) . (11)

This conductance is the ordinary three-terminal conduc-
tance of the fork. It could be measured by determining
the current through the normal wire under subgap con-
ditions (eV (( kT, 4). The effect of V, on the transport
voltage V may be neglected when V, is choosen small
enough. One sees that the conductance oscillates with a
frequency urz = eVs/h; the modulation is of the order of
the conductance itself.

In conclusion we studied the effect of interference on
the subgap conductivity of an N-I-S tunnel junction.
Transport is determined by the transfer of electrons in
pairs from the normal metal to the superconductor. At
low temperatures, interference between the two electrons
occurs in the normal metal over a longer length scale
than in the superconductor. Therefore, the subgap con-
ductance is determined not only by properties of the tun-
nel interface, but also by the layout on the normal side
near the interface over a distance Lz. These novel in-
terference effects can be made visible by influencing the
electron phase, e.g. , with the help of the Aharonov-Bohm
effect or the Josephson effect. We discuss these effects for
various layouts of practical interest, and present results
for the subgap conductance.
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