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Cracklike Surface Instabilities in Stressed Solids
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The surface of an elastically stressed solid is shown to undergo an instability in which deep, cracklike
grooves form by surface diA'usion. These grooves sharpen and accelerate as they deepen. The resultant
morphology is an excellent agreement with recent experimental observation in several disparate materi-
als systems.

PACS numbers: 68.35.Bs, 61.72.Bb, 62.20.Mk

The temporal evolution of the morphology of stressed
solids can be fundamentally diff'erent from that of un-
stressed solids. The equilibrium morphology of un-
stressed solids is usually determined by the principle of
minimization of energy. Such variational principles are
inapplicable when morphology is determined during
growth. For example, in solidification, the Mullins-
Sekerka instability can lead to complex, far-from-equi-
librium dendritic morphologies or deep surface grooves
(during directional solidification). Just as a temperature
or concentration gradient can overcome the surface ener-

gy and destabilize a planar solidification front, a stress in

a solid is capable of destabilizing otherwise flat surfaces.
Asaro and Tiller [1],Grinfeld [2], Srolovitz [3], and oth-
ers [4,5] have performed linear stability analyses which
show that the competition between elastic strain energy
and surface energy can lead to the growth of surface
profile perturbations at large stress, small surface tension,
and/or long wavelength. Experimental investigations of
this strain energy driven instability corroborate several of
the theoretical predictions. Torii and Balibar [6] per-
formed a series of experiments on nonhydrostatically
stressed He crystals and found that above a threshold
stress, large grooves form on thj; surface of the crystal via
surface diff'usion. A similar observation was made by
Berrehar et al. [7] who showed that a uniaxially stressed,
epitaxial single crystal film of polymerized polydiace-
tylene on a monomer substrate forms regular grooves or
quasiperiodic "cracks." Recent experiments [8] have
shown that ion implanted, compressively stressed Si02 is

susceptible to forming this same type of cracklike surface
morphology. The recent observations of this cracklike
surface morphology in such a wide variety of materials
indicate that this morphology is probably quite common
and does not depend on the detailed properties of the host
material.

While the linear stability analyses do adequately pre-
dict the conditions for the onset of instability, they are in-
capable of predicting the nature of the experimentally ob-
served morphology —i.e., the deep groove morphology.
The importance of properly accounting for the dominant
nonlinearities in evolution equations is widely recognized,
based upon studies in other pattern formation contexts.
In the present Letter, we present the results of a numeri-
cal study of the full nonlinear stress-driven surface insta-

bility problem. We demonstrate that a nominally flat
surface profile of an elastically stressed solid can rapidly
evolve into a cusped surface, with smooth tops and deep
cracklike grooves by surface diff'usion. This morphology
is in excellent agreement with those seen experimentally
[6,7].

Our analysis proceeds as follow. Using continuum
elastic theory, we derive a set of general equations for the
stress state within a uniaxially stressed semi-infinite solid
bounded by a surface of arbitrary shape. A boundary in-

tegral equation method is employed to solve these equa-
tions and determine the strain energy density field. The
strain energy density along the surface and surface ener-

gy are employed to determine the chemical potential
based upon the thermodynamics of elastically stressed
solids [9,10]. We assume that the matter transport
mechanism that controls the evolution of the surface
shape is surface diffusion. Finally, the resultant surface
evolution equation is solved using a Galerkin finite ele-
ment method.

Consider a two-dimensional, semi-infinite solid with a
traction-free surface lying along y =h(x) [the solid occu-
pies y(h(x)]. We assume that the surface profile is

periodic with wavelength A, [h(x) =h(x+X)] such that
the solid is subjected to a lateral bulk stress a . The dis-
placement field u; along the surface is given by an in-

tegral equation of the form

u;(&) =2 u;"(&) —„T;,( x, &) uj(&) dS( x)

where u is the displacement associated with the uniform
bulk stress cr and TJ is the elastic Green's function that
satisfies the periodic boundary conditions [11]. The
strain energy may be obtained from the stresses, which
are related to Eq. (1) through Hooke's law and the
definition of strain.

The chemical potential p along the surface of a
stressed solid can be described as p =p*+ yQ rc+ Q m,

where p is the chemical potential of the flat surface
bounding the solid with bulk stress a, y is the surface
free energy, 0 is an atomic volume, K is the surface cur-
vature, and co is the strain energy density evaluated at the
surface. A nonuniform chemical potential along the sur-
face sets up surface diff'usion fluxes proportional to the
chemical potential gradient. The velocity of the surface
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(normal to itself) U„ is proportional to the fiux divergence
[9]

D, Qb t)2p

kT ps~ ' (2)

where D, is the surface diA'usivity, kT is the thermal en-

ergy, 6 is the number of atoms per unit area in the plane
normal to the Aux direction, and the derivatives are eval-
uated along the surface. Equation (2) may be rewritten
in terms of the surface profile h(x, t) as

=D (1+a')-'" ( + )
8 8 tl

(3)

where D =D,b'0 /kT.
The evolution of the surface profile is determined by a

hybrid numerical procedure that combines a numerical
solution of the boundary integral equation for the elastici-
ty [Eq. (1)] with a Galerkin finite element technique for
solving the nonlinear surface evolution equation [Eq.
(3)]. Exactly the same surface profile discretization is
employed in both the elastic and evolution analyses. Cu-
bic 8-splines [12] are employed to describe the boundary
geometry and to serve as interpolation functions to
preserve the continuity of the derivatives. The Galerkin
finite element method is used for transforming the surface
kinetics equation from a partial diAerential equation to
an initial value problem. The weak formulation of the
evolution equation [Eq. (3)] is solved using a fourth-order
Runge-Kutta explicit time integration procedure.

We first compare the stress states predicted by the per-
turbative and boundary integral methods for a small
amplitude sinusoidal surface profile ho=A cos(2+x/A, ).

When a tensile stress o is applied parallel to the nomi-
nal surface, the maximum and minimum and tangential
stresses occur at the valley and peak of the surface
profile, respectively. The surface perturbation amplitude
dependence of the tangential stress at the valley and

peaky positions along the surface are shown in Fig. 1.
The lowest order perturbation solution [1-4] for the
stresses at the valley and peak of the surface profile are
rr [1+4+A/X]. Although the perturbation analysis pre-
dicts that the peak stress is negative for A/k ) 1/4', the
boundary integral method shows that the o.« is always
positive and approaches zero at large A/k. The perturba-
tive stress solution is only valid for small A/X ( &0.1).
Gao [4] reached similar conclusions based upon a com-
parison of the perturbation solution with a (less accurate)
finite element calculation of the stress concentration.

Figure 2 shows the temporal evolution of the surface
profile of a uniaxially stressed solid (in the direction
parallel to the nominal surface cr ) with A (t =0)/k
=0.05. All stress and time variables are reported in

scaled units: Z =rr (X/yE) '~ and r =k "/(Dy). Figure
2 shows the temporal evolution of the surface under for
2=3. The surface profile evolves slowly from the initial
cosine curve towards one with a pronounced groove at the
minimum or valley in the initial surface profile. Once
this groove forms, however, it grows rapidly. Two small
bumps form immediately adjacent to the deep groove at
long times.

Groove formation is attributable to the fact that the
maximum stress and strain energy density occur at the
position of the minimum in the initial surface profile.
Since the chemical potential has a term which is linear in
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FIG. 1. The stress at the peak and valley of a sinusoidal sur-
face profile as a function of the ratio of the amplitude to wave-
length of that profile. The stresses are normalized by the far
field stress. The solid lines represent the results of the present
boundary integral equation method and the dotted lines repre-
sent the perturbation theory results.
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FIG. 2. The temporal evolution of the surface profile under

the influence of a bulk stress 2=3. The initial surface profile is
a sine wave with an amplitude to wavelength ratio of Ao/k
=0.05. The different curves correspond to t =0, 0.5x10
1 & 10 z, 1.55 & 10 z, 1.56 x 10 z, 1.565 x 10 z, 1.567
& 10 z, 1.569 x 10 z, and 1.571 & 10 z, from top to bot-
tom.
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the strain energy density, matter diffuses away from the
minimum and, hence, the groove deepens. As the groove
becomes deeper, the stress concentration at the groove
root increases (as shown in Fig. I) and the groove growth
rate accelerates. The bumps that form adjacent to the
deep groove are regions in which matter diffusing out of
the groove accumulates. Their presence is a common
feature of surface diffusion controlled surface morphology
evolution (see, e.g. , [9]).

If we approximate the groove as half of an ellipse, the
stress field at the base of the groove may be described as
o«(x =X/2) = cr (I +2a/b), where a and b are the ma-

jor and minor axes of the ellipse. a may be associated
with the groove depth and b with the groove half-width.
Returning to the sinusoidal perturbation of Fig. 1, we as-
sign a =A and b =k/2. This suggests that near the
minimum in the sinusoidal perturbation a« = I +4(A/1, ).
Figure 1 shows that o«(x =X/2) becomes linear for
A/2, )0.3 and the slope is measured to be nearly 4, as
predicted. This analysis confirms that for deep grooves,
the stress and strain energy all increase at the groove tip
with increasing groove depth and that the groove growth
rate will accelerate with increasing groove depth.

The perturbation analysis yields A (t ) =A (0)e", where
the growth rate a=D(2Hcr k —yk ), k is the wave
number of the perturbation and H =(1 —v )/E or I/E in

plane strain or stress, respectively. Hence, the perturba-
tion theory predicts that the surface is unstable for
o'~ a, =(zy/M. ) ' = 1.88(yE/X) ', where we have set
v= —,

' . The amplitude of the surface profile (hm, „—hm;„)
is shown as a function of time in Fig. 3 for several values
of cr, where A(t =0)/k=0. 05. The solid curves repre-
sent the results from the nonlinear, numerical analysis,
while the individual data points represent the linear per-
turbation results [3]. The numerical results show that the
surface perturbation decays for Z= I, grows slowly for
Z=2, and quickly for Z=2.5 and 3, in agreement with

the perturbation analysis. The linear analysis accurately
predicts A(t) at low stresses/early times but greatly un-

derestimates the groove growth rate at larger stresses.
For Z=l and 2, the surface profile remains smooth and
grooveless for the times shown in Fig. 3, while for X =2.5
and 3, the groove forms very early. The small discrepan-
cy between the linear and nonlinear results for the grow-
ing Z =2 case is largely attributable to the increasing de-
viation of the surface profile from the sine curve as time
increases.

The linear perturbation analysis fails dramatically (see
Fig. 3) when a sharp groove forms. We can estimate the
rate at which the groove deepens by surface diffusion us-

ing the elliptical groove approximation, described above.
If we again approximate the groove as half of an ellipse
with a constant radius of curvature p at its root, the
growth rate of the major axis may be approximated as
da/dt = [—y+(a ) Ha](D/p ), in the deep groove
limit. When (cr ) aH/y»1, the groove growth rate is

proportional to the groove size and a (t ) = a (0)
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FIG. 3. The time dependence of the amplitude of the surface
profile (hm„—h;„, in units of X) under the influence of several
applied stresses Z 1.0, 2.0, 2.5, and 3.0, from lowest to highest.
The amplitude of the initial surface perturbation ratio Ao/k
=0.05. The solid lines represent the results from the nonlinear
surface evolution analysis. The data points (circles) correspond
to the results of linear perturbation theory for the same wave-
length and applied stresses.

&&exp[(a ) HDt/p ]. Figure 3 shows that after a short
time, the groove growth rate rapidly accelerates (i.e., pro-
vided that the stress is sufticiently large for groove
growth). This time dependence of the groove depth in

Fig. 3 becomes faster than exponential. The failure of
the semielliptical groove analysis is attributable to the
failure of the assumption that the radius of curvature of
the tip is independent of time.

In order to ensure that the rapid growth rate observed
in Fig. 3 was not an artifact of the discretization of the
surface in the numerical solution of Eq. (3), the numeri-

cal procedure was repeated with a significantly finer
discretization. The finer discretization led to no qualita-
tive changes in Fig. 3. However, the very rapid rise in

h,„—h;„=a was shifted to slightly earlier times. The
finer discretization also resulted in a very slightly sharper
groove. A very fine time step h, t = 10 i was employed
in the present calculations such that there are of order
100 points on the nearly vertical section of the Z =3 curve
in Fig. 3.

The results presented show that the linear perturbation
theory accurately predicts the onset of the stress driven

surface morphology instability, in agreement with the re-
cent experimental observations of epitaxial single crystal
films of polymerized polydiacetylene [7] and He [6].
However, unlike the linear perturbation theory, the
present nonlinear analysis clearly shows that the forma-
tion of the deep, cracklike groove morphology is the natu-
ral consequence of this stress-driven surface instability.
The present analysis also suggests that the groove shar-

pens as it propagates and accelerates. This acceleration
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cannot go on indefinitely and must be limited by the in-
herent discreteness of the atomic lattice. An atomically
sharp groove is a crack.

The cracklike form of the stress-driven surface grooves
suggests that there may be a connection between the
stress-driven surface instability and the fracture process.
In classical, brittle fracture mechanics (i.e. , Griffith
theory), a crack will grow if its length exceeds a critical
size a & a*=2E—y/tt(o ), where we have ignored dis-
sipative mechanisms such as dislocation plasticity. In
many cases, flaws present in the original material may be
sufficient large to propagate under the applied stress.
Even when there are now flaws larger than a* present,
crack growth and delayed fracture may occur, especially
at elevated temperatures. This delay must be associated
with crack nucleation and/or subcritical crack growth.
The mechanism by which cracks nucleate and grow sub-
critically is one of the most important deficiencies in our
understanding of fracture.

The time required for a surface perturbation to grow
into a supercritical crack depends on the surface dif-
fusivity, applied stress, and the wavelength of the initial
perturbation. In order to evaluate the significance of the
proposed crack nucleation mechanism, we estimate the
time required for a perturbation of the minimum unstable
wavelength (k =ytr/Hcr ) to grow into a supercritical
crack. Using the readily available physical data for
copper and an applied stress o. =10 E, we estimate
the time required to grow a supercritical crack to be ap-
proximately 1 yr at 1000 K. We note, however, that ap-
preciable surface roughness or local stress concentrators
could drastically reduce this period. While this applied
stress is sufficiently large to lead to plastic deformation in

copper, in other materials, where dislocation motion is
effectively inhibited (such as in materials with complex
crystal structures), stresses of this magnitude may easily
be achieved. Therefore, surface perturbations can grow
into cracks under conditions typical of diffusiona[ creep in
materials where nondiAusional plastic deformation is in-
hibited.

There is a long history of analysis of crack nucleation
and subcritical crack growth in stressed materials. Most
of these earlier studies have focused on stress corrosion
cracking [13,14] or the formation of creep cracks from
voids [15,16]. In both cases, surface diffusion and/or
chemical reactions have been shown to produce sharp
"cracks" from voids or notches, when the stress is
sufficiently large, or further blunting, otherwise. These
conclusions are consistent with those presented here.
Ho~ever, the present results clearly demonstrate that
crack nucleation can occur from a nominally flat surface
without relying on the presence of macroscopic voids or
notches to initiate fracture. Based upon the form of the
chemical potential, Larche and Cahn [10] and Roitburd
[16] suggested that necking of a sample in tension may be
associated with a surface instability. The present paper
demonstrates, through a nonlinear analysis, that this does

indeed occur and shows, for the first time, the manner
in which this stress-driven surface instability leads to
failure.

The present results demonstrate that the surfaces of
elastic solids are unstable against surface diAusion con-
trolled formation and subcritical growth of cracklike
grooves. The very fast groove growth shown in Fig. 3
occurs when the groove is suSciently sharp to behave like
a crack and when its length exceeds a*. In fact, inserting
the parameters used in the present analysis into the
expression for a* shows that the groove growth rate
diverges when its length is of order a* (within a factor of
2). When Z was decreased from 3 to 2.5 in Fig. 2, the
size of the groove reached prior to unstable growth in-
creases, in agreement with the expression for a*. Once
the crack exceeds the classical fracture criterion (a
~ a*), it will continue to propagate by bond breaking in-
stead of by surface diff'usion. This is the normal unstable
crack growth of fracture mechanics. At this point, crack
growth rates are limited by the speed of sound. Based
upon their linear stability analysis over two decades ago,
Asaro and Tiller [1] speculated that stress-driven surface
instabilities may be related to the early stages of crack
growth. The present results clearly demonstrate that this
speculation was correct.
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