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Adiabatic Spinodal Decomposition in Critical Binary Fluids
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We discuss early-stage spinodal decomposition in a near-critical binary Auid for a situation in which
the system is quenched abruptly by changing the pressure and in which the subsequent phase separation
occurs adiabatically. The resulting nonequilibrium situation has features that do not fit conventional
theoretical assumptions. We find that changes in the eAective temperature during the transition can ac-
count for the lack of agreement between earlier theories and recent experimental results of Bailey and
Can nell.

PACS numbers: 64.75.+g, 05.70.Jk, 64.60.—i

In a recent paper, Bailey and Cannell [1] (BC) have
reported precise light-scattering measurements of early
stage spinodal decomposition in a near-critical mixture of
3-methyl-pentane and nitroethane (3MP+NE). Their
experiment is, to our knowledge, the first fully quantita-
tive observation of phase separation in a thermodynami-
cally unstable state of a system for which all of the
relevant properties and all of the control parameters are
independently determined. Thus, their results provide a
rigorous test for nonequilibrium theories of a kind that
ultimately will be needed for reliable simulations of ma-
terials processes.

Although the BC experiments are uniquely well
characterized, they are carried out in a way that is not
consistent in some respects with conventional theoretical
assumptions about the spinodal process. The most impor-
tant of these differences is that BC quench their system
into the unstable state by abruptly changing the pressure,
not the temperature, and the subsequent unmixing of the
two phases takes place very nearly adiabatically rather
than isothermally. This procedure forces the theorist to
face an unexpectedly fundamental question, specifically:
What does one mean by "temperature" when a system is
driven so far from equilibrium? Our purpose in this
Letter is to outline brieAy our answer to this and some re-
lated questions, and to report that our calculations, with
no adjustable parameters, are in excellent agreement with
the experimental data. An account of this work may be
found in Ref. [2]; a complete report is being prepared for
publication.

Our analysis is based on the theory of Langer, Bar-on,
and Miller [3] (LBM) for the onset of isothermal spino-
dal decomposition in an Ising-like system with a con-
served order parameter. This theory was designed to de-
scribe phase separation up to the point where the reaction
has gone most of the way to completion but the charac-
teristic length scale of the separation pattern is not yet
very much larger than the correlation lengths g in the
separated phases. LBM start with a Cahn-Hilliard equa-

V(u) = dr —(Vu) +f(u)K
2

(2)

Here, the gradient-energy coeScient K and the free-
energy density f(u) are quantities that can be determined
from the equilibrium properties of the system. The func-
tion f(u) also depends on temperature T and pressure P.
For T and P such that the equilibrium state of the system
is the uniformly mixed phase, f(u) has a single minimum
near u=0. Unmixing occurs when f(u) develops two
minima at nonzero values of u.

It is very important for present purposes to note that u
is a coarse-grained variable and 7 is a coarse-grained free
energy. That is, u is a smooth function of position r that
contains no Fourier components with wave numbers k
greater than some cutoff A, which we take to be of order

', and the parameters in P have been renormalized by
integrating over the rapidly equilibrating modes with
k & A. We shall return to this point.

The process of interest here is one in which the most
probable values of u are initially near zero in the unstable
state but move toward the two minima of f(u) as phase
separation occurs. Equation (1) is formally equivalent to
a Fokker-Planck equation for a probability distribution in
the space of functions u(r), and this equation, in turn, is
equivalent to a hierarchy of equations of motion for mul-
tipoint distribution functions of the form Ptv (u ~, u2, . . . ,
ujv, t), where the symbols u„denote values of u at points
r„. The central feature of the LBM method is a simple
truncation of this heriarchy that avoids the assumption,
implicit in most low-order perturbation theories, that the
distribution over values of u remains peaked near zero.

tion of the form [4]

Bu 2bP
)HER + thermal noise,

8t bu

where u(r, t) is the local deviation from the average con-
centration of one of the chemica1 constituents, M is a
transport coeScient related to the diffusion constant, and
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Specifically, LBM assume that the time-dependent, two-
point probability distribution function P2(u~, uq, t) can be
written in terms of the one-point function P~ (u, t) via the
ansatz:

tl ]Op
Pz(u), uz) = P)(u))P)(uz) 1+

2 S(~r~ —r2~) . (3)

Because (u) =0 by definition, it is easy to see that the
function S in (3) is the two-point, equal-time correlation
function &u~u2) whose Fourier transform, S(k, t), is the
structure factor that is measured in scattering experi-
ments.

The ansatz (3) leads to an equation of motion for the
structure factor that looks almost the same as the equa-
tion that one obtains by the most elementary linearization
of the theory:

= —2Mk [[Kk +A(t)]S(k, t) —kaT] . (4)

(5)

and which therefore requires only a knowledge of P&(u, t)
for its evaluation. Deriving an equation of motion for P]
requires more work but no new assumptions; one simply
uses (3) in the first of the hierarchy of equations of
motion for the multipoint distribution functions. The re-

sult, which we shall not display here, looks as if the distri-
bution P~ is diA'using in a self-consistent time-dependent
potential that, as expected, causes the initial peak in P] at
u =0 to split into two peaks that signal the onset of phase
separation.

The LBM theory originally was tested [3] against nu-

merical simulations of the Ising model with Kawasaki
spin-exchange kinetics. It has also been used in the
analysis of x-ray and neutron scattering measurements of
phase separation in alloys [5]. In order to apply the
theory to Ouids, however, one must include hydrodynamic
degrees of freedom via a procedure introduced by Kawa-
saki and Ohta [6] (KO).

Because the length scales of interest here are very
small, we need to consider only advection of the concen-
tration gradient by overdamped viscous Aow which, in

turn, is driven by the same chemical-potential gradient
that appears on the right-hand side of (1). Accordingly,
KO add to the right-hand side of (1) a term of the form

—2 dr'Vu(r) T(r —r') V'u(r')
89'

6u(r') '

where T is the Oseen tensor ~hose components are
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The only nonlinear feature of (4) is the time-dependent
chemical potential A(t), which is the statistical average
of a one-point function:

and tl is the shear viscosity. When the LBM ansatz (3) is

used in connection with this modified Cahn-Hilliard
equation, the new equation of motion for the structure
factor S(k) differs from (4) in two respects: The trans-
port coemcient M is renormalized to include the hydro-
dynamic eAects, and an additional term containing the
Oseen tensor appears on the right-hand side.

For present purposes, we need not display these equa-
tions in detail, but we do need to be clear about one tech-
nical point. The quantity A(t) in the hydrodynamic ver-

sion of (4) is still defined by (5), but the distribution
functions P

~
(u) implicit in that definition should be

recomputed so as to be consistent with the changes in

S(k) generated by the hydrodynamic forces. In their
original paper, KO neglected this modification and simply
took the function A (t) from LBM [3]. It was later point-
ed out in an unpublished paper by A. 3. Schwartz that
the results of a fully self-consistent calculation are quan-
titatively diAerent from those of KO. In collaboration
with Bailey and Cannell, we have repeated and confirmed
Schwartz's results. In what follows, we shall refer only to
the self-consistent version of the theory.

The conclusion reached by BC, shown clearly in their
Fig. 3, is that their experimental data are in substantial
disagreement with the KO theory, and that the self-
consistent correction —if anything —makes the situation
worse. We propose that the principal reason for this
discrepancy is the assumption, implicit in the LBM and
KO analyses, that the phase transformation takes place
isothermally rather than adiabatically as is appropriate
for the BC experiments.

Our adiabatic version of the LBM-KO theory is based
on the following assumptions. We visualize the binary
fiuid as consisting of two distinct subsystems: (1) the rel-

atively slow, coarse-grained modes described by the order
parameter u(r, t), whose behavior describes the phase
separation, and (2) the rapidly equilibrating short-
wavelength modes that we have integrated out of the
equations of motion for u(r, t), which serve as a thermal
reservoir in contact with the slow modes. We assume
that these subsystems, together, are thermally isolated
from the outside world during the time in which measure-
ments are being made. We further assume that the reser-
voir of fast modes eAectively dominates the thermo-
dynamic properties of the system as a whole. Because the
reservoir equilibrates rapidly compared to any other
changes in the system, it makes sense to talk about a
reservoir temperature T„and we assume that T, is the
same as the temperature T that determines values of the
parameters in the coarse-grained free energy V(u).
Moreover, we assume that this coupling via T is the only
explicit coupling between the reservoir and the coarse-
grained modes.

In our picture of the adiabatic spinoda1 process, the ini-
tial pressure quench removes energy from the reservoir,
thus lowering its temperature. The coarse-grained
configuration remains unchanged at this instant. (The
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eA'ects of the small change in the volume of the system
are negligibile. ) The coarse-grained modes now see a
lower temperature and, because they have fallen out of
equilibrium, begin to undergo phase separation. During
this process, they release energy which, according to our
adiabatic assumption, can be adsorbed only by the reser-
voir. Thus the system experiences what is known in the
metallurgical literature as "recalescence"; the tempera-
ture rises and, as that happens, the kinetics of the phase
transformation are modified.

These processes can be summarized by an equation of
motion for the temperature T:

dT dr a(e(u))
"dt "'dt at

where V is the volume and
II'

(@( )& (r, ()P(u)/T
aT

(8)

is the internal energy of the coarse-grained system com-
puted using the time-dependent probability distributions
obtained from the LBM ansatz.

The quantities az, and C&, in (8) are, respectively, the
isobaric thermal expansion coefticient and heat capacity
for the reservoir, which must be computed by subtracting
the singular contributions of the slow modes from the
equilibrium values of these quantities in the critical re-
gion. In this connection, it is important to recognize the
importance of the choice of the cutofI' wave number A in

these calculations. In principle, A is an artificial parame-
ter that should cancel out of the final expressions for
physically meaningful quantities. In fact, however, our
choice of A is constrained by practical considerations. On
the one hand, we need to choose A large enough so that
what we call the "fast modes" do indeed equilibrate rap-
idly on the time scales that are of direct interest to us in

specific experiments. On the other hand, we need to
choose as small as possible a value of A so that essentially
all of the thermodynamically important degrees of free-
dom are included in the reservoir, that is, so that we can
easily determine the parameters in 9 by equilibrium mea-
surements.

For example, the BC experiments are carried out by
first allowing the system to come to equilibrium in a state
just outside the two-phase region and then quenching
abruptly to a state inside that region. Associated with
each temperature T as the system undergoes decomposi-
tion are correlation lengths g and associated (T-depen-
dent) relaxation times of order rr =6trrtg /knT. Choos-
ing A ' to be less than but roughly comparable to the
smallest of the g's assures both that the reservoir modes
are "fast" and that the coarse-grained modes contain
only just as many degrees of freedom as are necessary to
describe patterns of phase separation. We also know that
the coarse-grained modes with k (A are too slow to un-

dergo critical Auctuations at any stage of this experimen-
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FIG. 1. Scaled temperature c/~(. f~ as a function of scaled
time r for three adiabatic runs. The final temperatures are in-
dicated in the figure and the inititial temperatures are
e; =5~(.'f~. The straight line denotes the final equilibrium tem-
perature.

tal process, and thus we can formulate a self-consistent
procedure for eliminating the critical singularities in com-
puting Qpz and Cpp.

Equation (8) simply expresses energy balance within
the thermally isolated experimental sample. The first
term on the right-hand side is the work done during the
pressure quench, which is negative and therefore pro-
duces the initial drop in temperature. The partial pres-
sure of the coarse-grained subsystem is negligible, thus
the partial pressure of the reservoir is the same as P and
remains constant throughout the later stages of the pro-
cess. The second term is the contribution from the (de-
creasing) internal energy of the coarse-grained modes; it
is this term that drives recalescence. The combination of
(8) with the ingredients of the LBM-KO theory described
in the preceding paragraphs produces a set of coupled
nonlinear equations that is complicated but well suited to
numerical integration.

To demonstrate the results of the adiabatic theory, we
use equilibrium data for 3MP+NE [7] and adopt the
same experimental conditions as those used by BC [1].
We assume that all BC quenches were critical; that is, we
set the average concentration to be the critical concentra-
tion. We introduce no adjustable parameters.

In Fig. I, we plot (./~ ef ~
[e—= (T T, )/T, ] as a f—unction

of the reduced time r =t/rf. Here, the subscript f
denotes parameters evaluated in the final equilibrium
state after the quench, and the subscript i denotes the
initial state. For the quenches shown, e;/(.f = —5, and
T,ef = —0.04, —0.4, and —4.0 mK. We have set the
scaled quench time iq„,„,h to be 0.01; thus the initial tem-
perature drop does not appear on the graph. Clearly, the
temperature undershoot is large; the temperature reached
immediately after the quench is roughly —2~(.f ~, with the
smaller final temperatures giving the greater undershoot.
Note also that there is not much diA'erence in the scaled
temperature trajectories even though the final unscaled
temperatures diAer by a factor of 100.

In Fig. 2, we compare results of the adiabatic and iso-
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