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Evidence for Tvvo Exponent Scaling in the Random Field Ising Model
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Novel methods were used to generate and analyze new 15 term high temperature series for both the
(connected) susceptibility g and the structure factor (disconnected susceptibility) gd for the random field
Ising model with dimensionless coupling K=J/kT, in general dimension d. For both the bimodal and
the Gaussian field distributions, with mean square field J g, we find that (gd —g)/K gg =1 as
T T, (g), for a range of [h ] =J2g and d=3, 4, 5. This confirms the exponent relation y=2y (where
gd —t ", g t ",—t =T T,) prov—ing that random field exponents are determined by two (and not
three) independent exponents. We also present new accurate values for y.
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The critical behavior of random field systems has been
the subject of intense research since the pioneering work
of Imry and Ma [1]. For a while it seemed that the prob-
lem had been solved [2-4] using the idea of dimensional
reduction: Diagrammatic expansions imply that the ex-
ponents of the random field system in d dimensions are
equal to those of the pure system in d —2 dimensions.
However, accumulated evidence [5,6) has forced the com-
munity to abandon dimensional reduction in favor of
more accurate theories. Basically, all of these theories
generalize the idea of dimensional reduction, in that
hyperscaling relations (which involve the dimensionality)
for the random field system contain the shifted value
d —8 instead of d. However, the literature contains an
open controversy concerning the exponent 0, which de-
scribes the singular free energy F~ in a correlation volume
[of the size of the correlation length g —(T —T, ) '],
Fg —( . One approach [7-9], which follows a conjecture
put forward already in Ref. [2], maintains that F~—gg,
where g —[h ] is the mean square field and g is the sus-
ceptibility. Since g —g ", one finds that 8 =2 —ti.
Having related 8 to ri, this approach needs only two in-

dependent critical exponents (e.g. , ri and v) in order to
derive all the other exponents. In contrast, an alternative
approach [10-13) started from a droplet picture and
maintained that 0 is a new independent exponent, so that
one needs three independent exponents.

The Hamiltonian of the random field Ising model is
written as

&' = —J g a; crj +g h; a;
(ij) i

where (ij) denotes nearest neighbor pairs and o; =+' l.
The quenched random fields h; are uncorrelated, with
[h;] =0 and [h;hj] =J gb;J. , where [ ] denotes the
configurational quenched average. Commonly used dis-
tributions are the bimodal (h; = ~ JJg ) and the Gauss-

g =g [(aptTJ) —(op)(cr, )]
j

(2)

(here, ( ) denotes the thermal average, for a fixed
quenched configuration) and the structure factor (mea-
sured, e.g. , in scattering experiments),

gd =g [(opcrl)) . (3)

g and gd involve sums over connected and disconnected
correlation functions, respectively. For nonrandom sys-
tems, gd =g —(T—T, ) " for T ) T,. In random sys-
tems for T) T„gd —(T T, ) ", with y=v(4 —ti)—~y.

ian. One then expects a critical line in the T-g plane,
with the critical temperature T, (g) decreasing as g in-
creases. Since g is relevant, any finite length series
should exhibit a crossover from the nonrandom behavior
to that of the random field one. At large g, mean-field
theory [14] showed that the bimodal distribution has a
first order transition, beyond a tricritical point. This
leaves an intermediate window of g values in which criti-
cal behavior of the random field type is expected. Exist-
ing numerical values for the exponents are uncertain: Es-
timates from simulations [15] tend to support the two ex-
ponent picture. Some other numerical approaches do not
shed light on this issue but calculate some of the critical
exponents. These find the exact ground state for a finite
random field Ising system [16,17) or use real space renor-
malization [18] for given field configurations. In both
cases it is necessary to average over a finite number of
field configurations. The droplet picture [10-13] also
yields numerical values for exponents, but these involve
somewhat uncontrolled approximations (e.g. , diA'erent ex-
pressions for v in Refs. [10] and [11]).

A direct way to address the issue of two versus three
independent exponents involves the diAerence between
the susceptibility,
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In fact, the droplet model [10-13]yields the scaling rela-
tion

0=2+ g
—g, (4)

so that one can replace 0 by rl (or y) as the third in-

dependent exponent. However, Ref. [7] proposed the ad-
ditional relation @=2', which also implies y=2y and
8=2 —rl. In fact, a detailed proof [8,9] required an even
stronger relation to hold, namely, that

lim =1,Xd

T-T,+ K gg
(5)

where K =J/kT. In addition to giving the relation
j=2y, Eq. (5) also requires a unique universal value for
the amplitude ratio A.

In this Letter we present very precise numerical evi-
dence that Eq. (5) holds, for both the bimodal and
Gaussian random field distributions and for dimensions
d=3, 4, 5, and 8. In addition to this general statement,
we also present new accurate estimates for the critical ex-
ponents y and y in these dimensions. In d =3, 4, and 5,
we observe finite-temperature nontrivial critical behavior,
and in d=8 mean-field behavior is seen. Details, as well
as results for other mean-field dimensions d ~ 6, and for
d=2, where no finite temperature transition is seen, will

be published separately. Our new results are based on
new fifteenth order exact high temperature series expan-
sions for both distributions, in general d. As we explain
below, the achievement of these results was made possible
due to several technical advances in both the generation
[extending earlier work using no-free-ends (NFE) dia-
grams [19,20]] and the analysis (using new visualization
techniques [21]) of the series. The former allowed us to
(a) increase the number of terms for g from [22,23] 7 to
15 and (b) generate completely new series for gd. The
latter allowed us to analyze efficiently hundreds of series
for different values of d and g and obt'ain accurate esti-
mates for T„A, y, and y.

Series expansions have a great advantage over Monte
Carlo simulations, since they do not suAer from metasta-
bility and equilibration problems. However, significant
advances in the length of the series involve both algo-
rithmic complexity and long computer times. Once these
are overcome, our approach [19] generates double series
in K =J/kT (or w =tanhK) and g with coefficients which
are known polynomials in d. We used MATHEMATICA for
the complicated manipulations in generating the series,
for collecting the diagrammatic data into the series
coefficients, and for checks of part of the FORTRAN code.
The actual generation of the series was based on calculat-
ing the partition function as a series in w and in
=tanh(h;/kT), taking derivatives with respect to h; and
finally expanding in powers of h; and averaging.

We started by generating 15 terms for the nonrandom
Ising model in general d (requiring 842 NFE diagrams)
[24]. Our next important advance is based on the obser-

vation that since w=tanhK=K+0(K ), diagrams with
n bonds generate g-independent terms of leading order K"
but g-dependent terms of leading order K"+ g. There-
fore, the last two terms in the series (of orders K" ' and
K") contain only nonrandom diagrams, plus g-dependent
contributions from diagrams with up to n —2 bonds.
Having already generated 15 terms for the nonrandom
parts, we only needed to use full (non-NFE) diagram lists
(20724 diagrams) to thirteenth order to obtain the full

random field series to fifteenth order. We compared
MATHEMATICA and FORTRAN results for some thirteenth
order diagrams with several loops.

The generation of the series took about six months on a
dedicated IBM 320 RISC workstation, and details will be
published separately. We studied hundreds of series for
different values of d and g and the two field distributions
[25]. Our analysis was divided into four stages. We first
used a biased dlog Pade analysis of series obtained from
term-by-term-division [26] of the coefficients of the series
for gd by those of g. Such series diverge as (1
—K)" "+'. The resulting approximate estimates for

y
—

y showed a very rapid increase (at g & 0.1) from zero
(at g=0) to values of y

—
y which are close to estimates

of y found by later direct analyses (see below). As g is

increased further, y
—

y exhibits a very slow increase over
a wide range in g. This range of almost a plateau is
much larger than observed before with the much shorter
series [22,23]. At still larger g we saw a second cross-
over, with an apparent faster increase in g. This may sig-
nal the approach to the tricritical point. We have thus
concentrated on the "plateau" region, 0. 1 & g (g~, with

g~ =1.25, 6, and 15 (Gaussian) and g~ =1.25, 4, and 10
(bimodal) at d =3, 4, and 5, respectively.

In the second stage, we combined our recently de-
veloped e%cient three dimensional visualization methods
[21] with several analysis algorithms [19], which allow
nonanalytic conAuent corrections to scaling, to study
series for g and gd in the above g windows. Values of the
critical values K, (g) at selected g values are given in

Table I, and we discuss the exponent values below.
In the third stage, we obtained Pade approximants for

2 at K, (g) (as obtained above). As found in other stud-
ies [19,27] such a determination of ratios which involve

only amplitudes on the same side of the transition is very
stable to errors in K, and in correction terms. Table I
also exhibits several high near-diagonal approximants for

Clearly, 8 =1 to better than ~0.003 throughout the
plateau range in d=3. Equation (5) has thus been
confirmed. Note that the "plateau" in 2 is Hatter than
that in the exponents, and therefore the amplitude ratio is
a better test of universality (which requires that 2, y, and

y should be independent of g). A also started to increase
for g & gi.

Finally, we deduced overall exponent estimates. Hav-
ing identified the range of g values for which 2 is practi-
cally constant, we looked back at the values of y and y
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TABLE I. Values of the amplitude ratio 2 [Eq. (5)] for selected choices of d and g.

Distribution Kc [6/6]
Approximant

[5/6) [6/5] [5/5]

0.15
0.75
0.15
0.75

d=3
Gaussian
Gaussian
Bimodal
Bimodal

0.2268
0.246 75
0.2267
0.2478

0.999 866
0.997 313
0.999865
0.997 377

0.999 899
0.997 795
0.999898
0.997 845

0.999 899
0.997 791
0.999898
0.997 842

0.999866
0.997 313
0.999865
0.997 377

3.5
6
3

d=4
Gaussian
Gaussian
Bimodal

0.170625
0.1895
0.1691

1.01077
1.037 59
1.008 23

1.044 32
1.03708
1.03072

1.042 29
1.037 08
1.029 79

1.01077
1.037 59
1.008 23

8
10
5
8

d=5
Gaussian
Gaussian
Bimodal
Bimodal

0.1315
0.136875
0.125 313
0.134918

1.01201
1.019 13
1.004 86
1.01344

1.01200
1.018 36
1.005 74
1.01343

1.01200
1.018 35
1.005 72
1.01343

1.01201
1.019 13
1.004 86
1.01344

measured at the second stage. The series for gd contain
[8,9] more correction terms and generally behave less
well than those for g. [As seen from Eq. (5), gd contains
a contribution of order g, which acts as a correction to
the leading behavior. In addition, the numerator ap-
proaches the denominator only asymptotically; for finite
T—T, the diA'erence between the two also adds singular
corrections to gd. Both of these do not arise in the series
for g.] Given our results that A=1, we already know
that y=2y, and therefore we quote only values for y.
Averaging over the gradual increase in the exponents
with g, and including the appropriate range in the error
bars, we quote for both distributions, y =2. 1 ~ 0.2,
1.45+0.05, and 1.13~0.02 for d=3, 4, and 5. For
d=8 we found 2y=y =2.00+ 0.01. Our d=3 value of y
can be compared with those found from (a) determina-
tion of the exact ground state for a finite system, y =2.9
[16], y=1.58 —1.6 [17], (b) real space renormalization
[18], y =1.9 —2.2, (c) modified dimensional reduction
[28], y=2.05 —2.2, y=2y, and (d) older series expan-
sions, y=1.42 —1.48 [23] and y=1.7 [22]. In d=5, we
can compare only with the older series results of [22],
y=1.08 —1.18 and [23] y=1.17 —1.19. Pleasing agree-
ment is seen with Refs. [18] and [28], and the d=5 result
of Ref. [22].

In conclusion, we have shown that there are only two
independent random field exponents. While our study is
decisive on this matter, further simulation studies remain
of interest, and in particular a study of the ratio A. Our
precise critical temperature estimates should be a useful
input to such studies. We also note that our results may
now be compared with real experiments, since magnetic
x-ray scattering seems to show real equilibrium very close
to the surface of dilute antiferromagnets in a field [29].
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