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Measurement of the Proton Wave Function in Molecular Hydrogen by Neutron Compton Scattering
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The momentum distribution of the proton in liquid and solid hydrogen has been measured by neutron
Compton scattering (NCS), at energy transfers between 3 and 50 eV. The data display features due to
interference between the proton and neutron wave functions and are accurately described by a simple
quantum mechanical model, incorporating previous spectroscopic data. The excellent agreement be-
tween calculation and data in this simple system demonstrates that the NCS technique can provide ac-
curate information about the behavior of the proton in condensed matter. There are many applications
of NCS to more complex physical systems of fundamental interest in physics, chemistry, and biology.

PACS numbers: 61.12.Ex, 35.80.+s, 87.15.Kg

The possibility of measuring nuclear momentum distri-
butions in condensed matter systems by neutron scatter-
ing was first suggested by Hohenberg and Platzmann [1]
nearly 30 years ago. The method is analogous to the
measurement of electron momentum distributions by
Compton scattering [2] and measurement of nucleon mo-
menta by deep inelastic scattering [3] and is known as
neutron Compton scattering (NCS) or deep inelastic neu-
tron scattering (DINS). The theoretical basis of all three
techniques is the impulse approximation (IA), which is

exact when the momentum transfer q and energy transfer
to are infinite [4-6]. When the IA is valid, the scattering
cross section is proportional to the distribution of nuclear
momentum components along the direction of q and can
be used to determine n(p), the distribution of nuclei (and
hence atoms) in momentum space.

NCS measurements on protons have a particularly
simple interpretation, as the interaction of protons with
other atoms can usually be accurately accounted for [7,8]
in terms of a single particle potential and hence by a pro-
ton wave function. From elementary quantum mechan-
ics, n(p) is related to the Fourier transform of the proton
wave function +(r) via

longer valid and n(p) is not related in a simple way to the
observed scattering intensities. In systems with weaker
binding, lower energy transfers can be used and many
early NCS measurements were performed on helium at
relatively low energy and momentum transfers (to & 300
meV and q & 15 A '). These studies were motivated
primarily by the possibility of directly observing the Bose
condensate fraction in superAuid He [11-15]. More re-
cently NCS measurements with 15 & q & 40 A ' and in-
cident energies up to 2 eV have been made on condensed
phases of helium [16] and neon [17]. There have been a
few pioneering studies on various systems at 1 eV energy
transfers [18-20]. Measurements on molecular hydrogen
have also been made, with m insu%cient to excite vibra-
tional transitions [21,22]. This allows a measurement of
the center of mass motion of H2 molecules rather than
the momentum distribution of individual protons. The
measurements described here were made with 3 & co & 50
eV and 30 & q & 130 A '. At such high values of q and
co, accurate NCS measurements can be made even in

strongly bound systems such as hydrogen.
The forrnal statement of the IA in neutron scattering is

[23]

n(p) =, „e(r)exp(ip r)dr
(2tr ' " (p+q)'S(q, to) = n(p)b to+ P — P q dp,2M 2M

(2)

and an NCS measurement of n(p) can be used to deter-
mine the wave function in an analogous way to the deter-
mination of real space structure from a diA'raction pat-
tern. In principle such measurements can provide very
detailed information about the behavior of the proton in a
variety of systems of fundamental interest in physics,
chemistry, and biology.

NCS measurements on protons have only become pos-
sible since the construction of intense accelerator based
neutron sources, which have allowed accurate inelastic
neutron scattering measurements with energy transfers in

the 1 eV region [9]. For NCS measurements on the pro-
ton in molecular hydrogen, energy transfers much greater
than the vibrational frequency of the molecule (516 meV
[10]) are required before the IA can be used to reliably
determine n(p). At lower energy transfers the IA is no

S(q, ro) =(M/q) J(y),
where

y =(M/q) [to —q'/2M]
and

(3)

y ) 2tr J
I I

p (p dp (5)

J(y)dy is the probability that an atom has a momentum

where S(q, ro) is the dynamic structure factor, n(p) is the
nuclear momentum distribution, p is the atomic momen-
tum, and M is the nuclear mass. The 6 function ex-
presses the conservation of kinetic energy, which applies
to the collision between the nucleus and the neutron when
the IA is satisfied. When the scattering sample is isotro-
pic it can be shown that [5]
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component along q with magnitude between y and y+dy
and is known as the Compton profile. Equations (3)-(5)
express the "y scaling" property of the neutron cross sec-
tion at sufficiently high q [24].

The measurements were performed on the electronvolt
spectrometer (EVS) at the ISIS neutron source [25]. A
filter difference technique [26], with a gold foil analyzer,
was used to fix the energy of the scattered neutron at
4.922 eV. Time of IIight techniques [27] were used to
determine the energy of the scattered neutron and hence
S(q, ro). The sample of parahydrogen was measured at
temperatures of 20 and 4 K (the liquid and solid phases,
respectively) and was a 5% scatterer, contained in a pla-
nar aluminum can with a sample thickness of —1 mm
and with the sample plane perpendicular to the incident
beam. Measurement times were 24 h at each tempera-
ture. Because of the y scaling property mentioned above,
all scans through q, m space map onto the same function
J(y). Thus, providing the IA is well satisfied, the mea-
surements of J(y) at different angles differ only in the
width of the instrument resolution function and can be
averaged to improve statistical accuracy. As the dif-
ferences observed between the 4.9 and 20 K data were at
the limits of measurement accuracy, the data sets at the
two temperatures were also averaged to further reduce
the statistical error.

Figure l(a) shows the average of Compton profiles
measured in ten He gas detectors at angles between 35
and 45', 1(b) that for ten detectors between 45' and 55',
and 1 (c) for twenty detectors at angles between 55' and
75'. The instrument resolution function [25,28] is also
shown for each of these data sets, together with the ener-

gy and momentum transfers corresponding to the detec-
tor at the center of each bank. There is a small multiple
scattering component in the data which is visible at large
positive y values, particularly in the data sets at the two
lower angles, and this has been fitted by a second-order
polynomial.

It follows from the physical significance of the Comp-
ton profile that J(y) should be symmetric about y =0.
However, the data in Fig. 1 show small systematic shifts
of the peak of the distribution towards negative y, due to
inaccuracies in the IA which are present at the finite q of
the measurement. It has been shown by Sears [5] that
symmetrization of data about y =0 removes most of these
inaccuracies and this procedure has been followed to pro-
duce the data shown in Fig. 2. The data from all detec-
tors between 35' and 55 has been averaged and the mul-
tiple scattering background subtracted before symmetri-
zation.

The results are well described by a simple quantum
mechanical model. It is assumed that the hydrogen mole-
cule is bound by a harmonic potential and that its center
of mass translational motion is independent of its vibra-
tion along the bond axis. The latter approximation is
highly accurate due to the diAerent energy scales involved
in the two types of motion. J(y) is then the convolution
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FIG. 1. The data points are the average of the measured
neutron Compton profiles obtained from detectors in three
different angular ranges: (a) 35'-45', (b) 45'-55, and (c)
55 -75 . The solid line is the fit described in the text. The
resolution function is shown for each data set as a dashed line.

of the momentum distributions for the vibrational and
translational motions considered separately,

J(y) =„"JT(y')Jv(y' y)dy'. — (6)

The translational momentum distribution JT(y) is ap-
proximated by a Gaussian function,

1
2J,(y) = exp (7)

j2+~,'
From previous measurements [21] the kinetic energy of
the center of mass motion is 63 ~ 6 K in the liquid at 17
K and 76 ~ 9 K in the solid at 10 K. Taking the average
of these values as 70 K, the translational kinetic energy of
each atom is 35 K =3cTT/(2M) and aT =0.70 A

The momentum distribution Jv(y) associated with vi-
bration along the bond can be determined from the wave
function of the proton in the molecule. Since the binding
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FIG. 3. The solid line is the Jv(y) calculated from Eq. (9);
the dotted line is the convolution of Jv(y) and Jr(y), i.e., J(y)
of Eq. (6). The dashed line is the convolution of J(y) with the
instrument resolution function used in Fig. 2.
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FIG. 2. In (a) the points o are the sum of data from twenty
detectors at scattering angles between 35 and 55' after sub-
traction of multiple scattering and symmetrization. The solid
line is the calculation using Eq. (9) and the dashed line that us-
ing Eq. (10), both after convolution with the instrument resolu-
tion function. (b) The difference between the data and the two
models: o, Eq. (9); x, Eq. (10). The solid line is the difference
between the quantum and classical models.
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+(r ) = [2n3/2cr(cr2+ 2R 2) ]
—i/2 exp

—(r —R)'
2G'

where the mean square displacement of the atom from its
mean position along the bond is a /2 (=Jr ~+(r)~ dr).
The normalization constant in Eq. (8) is approximate in
that it relies upon the shell width being sma11 compared
to R, and neglects terms of order erfc(R /cr ), where
erfc(x) is the complementary error function. Neglecting
terms of order erfc(R /2o ), Eqs. (1) and (8) give

20'
pg(p) = (pcr cospR+RsinpR)

z3/ p cr +2R
xexp( —cr'p') . (9)

The bond length is accurately known from spectroscopic
measurements (R =0.3405 A [10]) and the value of o
can be determined from the frequency of molecular vibra-
tion. In the vibrational ground state the total kinetic en-

is assumed harmonic, each atom will have a Gaussian
probability distribution along the bond axis, centered at
its mean position at distance R from the center of mass,
where 2R is the bond length. In parahydrogen below 20
K only the J=O state of rotation is thermally occupied
and the molecular wave function has no directional
dependence. Thus the wave function of each proton is a
spherical shell

ergy of molecular vibration is cop/4 where coi is the vi-

brational frequency. Thus each atom has kinetic energy
coi/8 and since the potential is assumed harmonic, the
momentum distribution is Gaussian with a standard devi-

ation of cry= JMcoi/4 [8]. With coy=516 meV, ai
=5.577 A ' and the mean square displacement of the
atom from its mean position along the bond is

o /2=1/4oy, thus o =0.1269 A. With these values of a.

and R, the approximations involved in the derivation of
Eq. (9) are accurate to better than I part in 10 .

The functions Jz(y) and J(y), calculated from Eqs.
(5), (6), (7), and (9) using the values of o, R, and oT ob-
tained above, are shown in Fig. 3, together with the con-
volution of J(y) with the average instrument resolution
function for the 35'-55' bank of detectors. The solid

line in Figs. 1(a)-1(c) is a fit to a convolution of the
model J(y) with the resolution function. The only fitting
parameters are a scale factor, the position of the distribu-

tion, and the polynomial coefticients, which account for
the multiple scattering background. The values of cr, R,
and aT were fixed at the values given above. It can be
seen that the model gives excellent agreement with the
measurements at all angles. The small shift in the peak
position from the expected value at y =0 is due to inaccu-
racies in the IA. The solid line in Fig. 2(a) is the calcu-
lated J(y) after convolution with the resolution function
—there are no free parameters. The diff'erence between

the predictions of the model and the symmetrized data is

shown in Fig. 2(b) as the points o. The good agreement
between data and calculation suggests that the symmetri-
zation efI'ectively removes the small deviations from the
IA which are observed in the data. A fit to the data
shown in Fig. 2(a) with R and a as free parameters gave
R =0.356~0.003 A and a =5.70~0.03 A ', in good
agreement with the values of 0.37 and 5.577 obtained
from spectroscopy, although outside the quoted statistical
error, due to small systematic errors.

The importance of including the oscillatory terms in

Eq. (9) is demonstrated by the predictions of a classical
model, which neglects the wave nature of the proton. It
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is assumed that the molecule is a classical linear vibrator
and that each proton has a Gaussian momentum distribu-
tion along the bond. Averaging over all possible direc-
tions of the bond axis in space to take account of the isot-
ropy of the sample gives

n(p) =,nv(p),1 (10)
2z'p

where nt (p) is the distribution of momentum com-
ponents along the bond. A calculation using Eqs. (5),
(6), (7), and (10) gives the results shown as the dashed
line in Fig. 2(a). The difference between the classical
and the quantum models is shown as the solid line in Fig.
2(b). The same values of the vibrational and translation-
al kinetic energies were used in both calculations. The
difference displays oscillations with a first maximum at
y = tr/2R. This is well reproduced by the data points x,
which are the diAerence between the data and the classi-
cal prediction. The oscillations in the data are the first
observation of interference between the proton and neu-
tron wave functions.

The future applications of NCS measurements from
protons and deuterons are very wide. An example is the
hydrogen bond where NCS can determine whether the
observed bimodal distribution of the proton in hydrogen
bonds is the result of statistical or quantum disorder [29].
The information obtained from NCS is qualitatively
different from that given by neutron diffraction measure-
ments. The latter determine an infinite time average of
the spatial distribution of the proton whereas the former
measures the proton wave function on a very short time
scale. Thus NCS can distinguish between quantum tun-
neling and thermally induced hopping of the proton be-
tween different sites. One application is to the study of
the mechanism of protonic diAusion in metals, semicon-
ductors, and ionic conductors. Another is to the deter-
mination of the proton wave function in molecules which
undergo rotational tunneling [30]. In the latter case an
independent measurement of the molecular center of
mass motion can be made by NCS measurements on
heavier atoms in the molecule.

The very close agreement between data and calculation
in this simplest of protonic condensed matter systems
demonstrates that NCS measurements have now reached
a high level of accuracy. It shows that wave functions of
protons can be determined even in isotropic samples, such
as liquids, powders, amorphous materials, and polymers.
Much more detailed information about the proton wave
function can be obtained from single crystal samples,
where NCS allows a model-independent reconstruction of
both the proton wave function and the potential well of
the proton in three dimensions [29]. Orders of magnitude
increases in the accuracy of NCS measurements will soon
be produced by improvements in count rate and resolu-
tion and it seems certain that future measurements will
provide precise and unique information about the short
time dynamics of protons in many condensed matter sys-
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tems of fundamental physical interest.
Thanks to Dr. 3. Tomkinson for many stimulating dis-

cussions, to Dr. E. Pace for pointing out the inadequacy
of the classical model, to Dr. A. D. Taylor for support
and encouragement, and to the ISIS sample environment
group, particularly I. Bailey, for help with the experi-
ment.

[I] P. C. Hohenberg and P. M. Platzmann, Phys. Rev. 152,
198 (1966).

[2] P. M. Platzmann, in Momentum Distributions, edited by
R. N. Silver and P. E. Sokol (Plenum, New York, 1989),
p. 249.

[3] I. Sick, in Momentum Distributions (Ref. [2]), p. 175.
[4] R. Newton, Scattering Theory of Waves and Particles

(Springer, Berlin, 1981).
[5] V. F. Sears, Phys. Rev. 8 30, 44 (1984).
[6] J. Mayers, Phys. Rev. 8 41, 41 (1990).
[7] R. Hempelmann, D. Richter, and D. L. Price, Phys. Rev.

Lett. 58, 1016 (1987).
[8] M. Warner, S. W. Lovesey, and J. Smith, Z. Phys. 8 39,

2022 (1989).
[9] R. S. Holt, J. Mayers, and A. D. Taylor, in Momentum

Distributions (Ref. [2]), p. 295.
[10] I. F. Silvera, Rev. Mod. Phys. 52, 393 (1980).
[11]R. A. Cowley and A. D. B. Woods, Phys. Rev. Lett. 21,

787 (1968).
[12] O. K. Harling, Phys. Rev. Lett. 24, 1046 (1970).
[13] H. A. Mook, Phys. Rev. Lett. 32, 1167 (1974).
[14] H. A. Mook, Phys. Rev. Lett. 51, 1454 (1983).
[15] P. Martel, E. C. Svensson, A. D. B. Woods, V. F. Sears,

and R. A. Cowley, J. Low Temp. Phys. 23, 285 (1976).
[16] T. R. Sosnick, W. M. Snow, and P. E. Sokol, Phys. Rev.

8 41, 11 185 (1990).
[17] D. A. Peek, M. C. Schmidt, I. Fujita, and R. O. Sim-

mons, Phys. Rev. 8 45, 9671 (1992); 45, 9680 (1992).
[18] H. Rauh and N. Watanabe, Phys. Lett. 100A, 244

(1984).
[19] M. P. Paoli and R. S. Holt, J. Phys. C 21, 3633 (1988).
[20] S. Ikeda, K. Shibata, Y. Nakai, and P. W. Stephens, J.

Phys. Soc. Jpn. 61, 2619 (1992).
[21] W. Langel, D. L. Price, R. O. Simmons, and P. E. Sokol,

Phys. Rev. 8 38, 11 275 (1988).
[22] K. W. Herwig, J. L. Gavilano, M. C. Schmidt, and R. O.

Simmons, Phys. Rev. 8 41, 96 (1990).
[23] S. W. Lovesey, Theory of Neutron Scattering from Con

densed Matter (Oxford Univ. Press, New York, 1987).
[24] G. B. West, in Momentum Distributions (Ref. [2]), p. 95.
[25] J. Mayers and A. C. Evans, Rutherford Laboratory Re-

port No. RAL-91-048, 1991 (unpublished).
[26] P. A. Seeger, A. D. Taylor, and R. M. Brugger, Nucl. In-

strum. Methods Phys. Res. , Sect. A 240, 98 (1985).
[27] C. G. Windsor, Pulsed Neutron Scattering (Taylor &.

Francis, London, 1981).
[28] C. Andreani, G. Baciocco, R. S. Holt, and J. Mayers,

Nucl. Instrum. Methods Phys. Res. , Sect. A 276, 297
(1989).

[29] G. Reiter and R. N. Silver, Phys. Rev. Lett. 54, 1047
(1985).

[30] W. Press, Single Particle Rotations in Molecular Crys
tais (Springer, Berlin, 1981).


