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Cascade Model for Intermittency in Fully Developed Magnetohydrodynamic Turbulence
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Evidence of intermittency in the interplanetary space plasma has been recently pointed out. We
present a magnetohydrodynamic (MHD) cascade model, derived from a binomial process, whose results
fit the observed scaling law for the qth power of the structure functions. Using this model we modify the
oldest Kraichnan theory showing, for the first time, the multifractal structure of fully developed MHD
turbulence.

PACS numbers: 52.35.Ra, 47.53.+n, 95.30.Qd

In an early work on fully developed magnetohydro-
dynamic (MHD) turbulence, by using the hypotheses
that (i) the nonlinear interactions occur only between
Alfvenic lluctuations of the same length scale 1 and (ii)
the energy Aux from vortices of scales & I to vortices of
scales &1 assumes a value independent from 1 (no inter-
mittency), Kraichnan [1] derived the k 1 (k —1 ')
power law for the inertial range spectrum of the magnetic
and kinetic energy densities in the stationary state. The
diAerence with the k Kolmogorov spectrum for hy-
drodynamic turbulence is due to the fact that [1,2] the
nonlinear interactions in MHD are slowed down, since
they occur only between Auctuations propagating in oppo-
site directions with respect to the magnetic field of the
largest scale. Recently, analyzing satellite observations in

the solar wind, some authors [3-5] showed that the ex-
ponents of the qth power of the structure functions of the
measured velocity and magnetic fields are nonlinear func-
tion of q. These observations indicate that [6] intermit-
tency is present in MHD Auctuations and, as a conse-
quence, the Kraichnan theory, which describes fully
developed MHD turbulence, should be modified. Up to
now, whereas many works have been published about in-

termittency modification of the Kolmogorov theory [6],
nothing has been done for the Kraichnan theory.

The equations describing incompressible MHD tur-
bulence can be written as

+(z v)z —= 'vp, —— (1)
Bt p

P being the total (magnetic plus kinetic) pressure and p
the plasma mass density. The variables Z —=v~ B/
J4trp (v and B are, respectively, the velocity and the
magnetic fields) represent the two possible Alfvenic
modes propagating in opposite directions along the mag-
netic field of the largest scale. Equations (1) contain nei-
ther source nor dissipative terms as we concentrate upon
the inertial range of the turbulence, i.e., on scale lengths
lD « 1 «L (lD is the length at which dissipative eA'ects be-
come important, and L is the greatest length scale).
From a physical point of view the existence of the inertial
range, i.e., the excitation of smaller and smaller length
scales I, can be viewed as a nonlinear energy cascade

where X & 0 and h is a free parameter (the times scale as
and we choose P P'k "). Two main

consequences of this invariance are the following: (i) For
each value of h the quantity Z —/1" is also invariant, so
that we can expect to obtain a scaling law where Z—
scales as 1". (ii) The energy transfer rate scales as
II — (II —)'X' ". Then II —assumes a value indepen-
dent on the scale 1 (no intermittency) only if h = —,', and
in this case the qth power of the structure functions,
defined by (~Az —

~
& =(~z —(x+1)—z —(x)

~
) (brackets

being spatial averages and z —=Z —/c~ ), scales as
(~Az —

~
)-(1/L) ". By defining the pseudoenergy den-

sity spectra E —(k) through —,
' ((Z —) ) =fdk E —(k),

the q/4 scaling law leads to the Kraichnan spectra
E —(k) —k t . On the contrary, in the presence of in-

termittency, H — can be considered as a spatially Auc-

tuating quantity, or, in other words, the singularity h can
assume any value [7]. We then introduce, for the struc-
ture functions, a scaling law of the type (~Az —

~

q)

—(1/L) ~ ~, and assuming Z+ —Z, from (2) we find

(~~ —
~

~& —(1/L) ~"((ie (3)

where e —=II —(l)L/c~. To obtain an expression for

from the scale L to lD. This energy cascade [2] is real-
ized stochastically in a time T ——(rNL) /rz, due to
1V ——(r NL/r~ ) statistical encounters with random
phases between eddies of the same scale length l and am-
plitudes Z —(1) [being Z —(1) an order of magnitude es-
timate for Z —]. The time rNL —1/Z represents the
lifetime of the nonlinear interactions, while r~ —1/c~ is

the time needed to decorrelate the interacting eddies (c~
being the Alfven velocity related to the scale L). The en-

ergy transferred per unit time towards the smaller scales
II (1) —(Z —) /T —is then given by

w (1) (Z ) (Z ) (2)
cg I

and turns out to be the same for both the Z —modes.
The MHD equations (1) are invariant [7] under the

following scaling transformations:

z —-(z —)'x ',
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((q) we introduce, for the energy transfer rate, a set of
singularities a defined by e —(I)—(l/L) in the limit I/L

0. These singularities are related to h through a=h
—4, so that assuming for the qth power of the energy
transfer the following scaling law, (~e —

~
)—(l/L)" q,

from Eq. (3) we found the relation ((q) =q/4+a(q/4).
ln order to find the curve p(q), we introduce a simple

cascade model corresponding to a binomial process, rep-
resented as a generalized two-scale Cantor set with equal
partition intervals [6,8]. Let us suppose that an eddy of
size l, with an assigned measure II —(l), breaks up into
two eddies of equal size l/2, and let us suppose that the
energy flux proceeds unequally on the two eddies of size
1/2. A simple choice for the transfer is to assume that
one of the smaller eddies (selected randomly) receives a
fraction plI (l) and the other eddy receives a fraction
(1 —p)II —(l). This choice preserves the measure II —,
since we are dealing with inertial range quantities, so that
dissipative effects are negligible. This fragmentation pro-
cess, starting at the length L, is repeated for smaller and
smaller length scales, until the end of the inertial range
where the energy is dissipated and the eddies' fragmenta-
tion is stopped. The parameter 0 & p & 1 is a measure of
the asymmetry of the energy flux towards the smaller ed-
dies: for p =

2 there is no intermittency since the energy
cascade is symmetric, whereas for extreme values of p the
energy flux is strongly asymmetric. After n steps of the
cascade, the size of each eddy is l/L =2 ", and there are
(" ) eddies where e' —=p" (1 —p) (m =0, 1, . . . , n)
In the limit n ~, the number of eddies is given approx-
imately by exp[ —[m —n/2] /(4n)'/ l which is strongly
peaked around m =n/2 and has a width of the order of
Jn. These eddies receive almost the same fraction of the
measure, say B=p"/ (1 —p) "/, and they occupy a total
length P"=82"={2[p(1—p)]'/ J". If pA —,

' then P (1,
so that the energy flux is concentrated asymptotically on
a limit set whose volume tends to zero as n ~, while its
fractal dimension can be estimated as the Hausdorff di-
mension DH =2+ln2/1n[p(1 —p)] '/. Summation over
all eddies at a given scale l yields P~e —(l) ~~=[p~+(1—p) ]", and using the identity [9] P~ e —(l)

~

= (l/
L) ', we found p(q) =(q —1)Dq. The dimensions

D =log [pq+ (1 p)q] 1/(1 —q)

correspond to the generalized dimensions set of Hentschel
and Procaccia [9]. The multifractal structure of MHD
turbulence can be described by introducing the so-called
singularity spectrum [6,8] f(a), given in our model by

f(a) =1 go(n2m/) —(1 —m/n) l go(n2/m —1) .

This function [8] represents the set of fractal dimensions
related to each singularity

a = —(m/n) [logqp+ (n/m —1) log2(l —p)] .

These results refer to a one-dimensional cut, while the

corresponding three-dimensional formulas can be ob-
tained simply [6] by adding 2 to a, f(a), and D~. Using
these results we finally obtain, for the scaling exponent of
the structure functions of Z —,the following expression:

g(q) =1 —log2[p'/4+ (1 —p) &/4] (4)

which is valid in the limit of Z —Z (standard MHD
turbulence, in the terminology of Ref. [10]). The Kraich-
nan scaling law is obviously recovered when p = 2,
whereas, if intermittency is present, the pseudoenergy
density spectra are E —(k) —k, with spectral indices
given by m —= —,

' +B(p). The function B(p) =((2) ——,
'

represents the modification to the classical Kraichnan
spectral index. Note that, since B(p) ~ 0 for each p, in-

termittency gives rise to spectra steeper than the Kraich-
nan spectra. Furthermore it is worthwhile to note that, if
the energy flux is strongly asymmetric, we find m — 3,
i.e., the pseudoenergy densities can follow a Kolmog-
orov-like spectrum also in the MHD framework. Up to
now this particular consequence of intermittency in

MHD, which perhaps could have some interesting conse-
quences in understanding the origin of low-frequency
fluctuations in the interplanetary medium [10], has not
been investigated.

We have fitted the curve (4), through a g method, on
the corresponding values found by Burlaga [3] in his
analysis of Voyager measurements at 8.5 AU (astronomi-
cal units). We found for the intermittency parameter the
best fit p=0.69+0.01. Using this value the end points
of the curve f(a) are D — —0.515 and D —1.737, cor-
responding, respectively, to the sets where the measure is

most rarefied and most concentrated. The fractal dimen-
sion of the set where all the singularities of the energy
flux are located results to be close to space filling, being
Do —2.96. Finally the curve f(a) has unitary slope for
D~ —2.88, which represents the dimension of the set (of
volume zero) where all of the energy flux is concentrated
asymptotically.

To conclude, using a simple cascade model for the en-

ergy flux towards the smaller length scales, we found, for
the first time, the intermittency modification to the
Kraichnan theory, thus showing the multifractal struc-
ture of MHD turbulence. Our model, which takes into
account only an asymmetric energy flux, can be viewed as
a first step in a correct understanding of multifractal
structures in MHD [7]. However, the agreement be-
tween our results and the pioneering observations of in-
termittency in the interplanetary space fluctuations [3-5]
allows us to explore further variants of the model, related
to more accurate measurements of both standard and
"Alfvenic" MHD turbulence [10]. A future paper will be
devoted to get deeper insight in these problems.
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