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Eff'ects of External Noise on the Swift-Hohenberg Equation
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The Swift-Hohenberg equation is studied in the presence of a multiplicative noise. This stochastic
equation could describe a situation in which a noise has been superimposed on the temperature
gradient between the two plates of a Rayleigh-Benard cell. A linear stability analysis and numerical
simulations show that, in constrast to the additive-noise case, convective structures appear in a
regime in which a deterministic analysis predicts a homogeneous solution.
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Hydrodynamic systems have been commonly used as
prototypes to study instabilities out of equilibrium in
spatially extended systems, from both an experimental
and a theoretical point of view [1]. Recently, experimen-
tal results have focused on the effects of fluctuations in
these systems. Examples in which noise seems to have
an important role are the generation of convective rolls
in Rayleigh-Benard instabilities [2], the propagation of
Taylor vortices in an unstable Couette-Taylor flow [3],
electroconvection in nematic liquid crystals [4,5], and
waves in film flow [6]. Noise is also important in the
side-branching mechanism of solidification fronts [7—9].
In some of the experiments [2,7—9] the origin of the noise
is not yet clear. Some theoretical studies of stochastic
equations have been performed in order to explain such
experiments [10—20]. However, the correct modeling of
the experiments is far from being understood and the
comparison between theoretical and experimental results
is not successful in all situations [17,19]. Noise could
have an internal or external origin, and it could appear
in the dynamic equations or in the boundary conditions.
The simplest way to consider fluctuations is by adding a
thermal noise to the macroscopic equations. However, it
has been observed that in some cases there is a large dis-
crepancy between the values of the intensity required to
achieve good agreement with experiments and those cor-
responding to a thermal noise assumption [17,19]. A the-
oretical study of different stochastic models and a com-
parison with experimental results seems to be a good
procedure to clarify this situation.

The Swift-Hohenberg equation has been used to study
Rayleigh-Benard convection [1]. In the deterministic sit-
uation, for some value of the external control parameter,
the fluid evolves from a homogeneous state to the gen-
eration of rolls. Fluctuations of internal origin are intro-
duced by means of an additive noise [19—21]. The effects
of deterministic perturbations, like temporal ramps [19]
or sinusoids [14,19], on the external parameter have also
been studied. In order to achieve better understanding of
the efFects of noise it is interesting to deliberately apply
stochastic perturbations to the external parameter. In
this I etter, we study a model which contains such fluctu-

ations of external origin. This model could describe fluc-
tuations in the temperature gradient that is externally
applied to the system, giving rise to a new nonequilibrium
situation. In this situation, the noise appears in the cor-
responding Langevin equation multiplying a function of
the relevant variable. This is the so-called multiplicative
noise. Its efFects on the system are, in general, differ-
ent from those induced by simple additive noise, because
they depend on the state of the system [22,23]. In par-
ticular, a shift of the instability points has been observed
in some experiments in liquid crystals [4,23].

We study a model which contains multiplicative noise
and perform a linear analysis and numerical simulations
to study the efFects of this noise on the stability condi-
tion. In contrast to the additive-noise case, in which the
efFects of noise are only present for large noise intensi-
ties and consist on the appearance of disordered states,
rnultiplicative noise induces a change in a linear stability
analysis. The more surprising aspect is that this kind
of noise induces the hydrodynamic transition to occur
for a smaller value of the control parameter. That is,
convective structures are predicted in a region near the
deterministic point in which no pattern would exist with-
out the external noise. This is also opposite to the result
of the application of a sinusoidal perturbation, where the
transition takes place for larger values of the control pa-
rameter [14,19].

To study the multiplicative-noise effects in pattern for-
mation we consider the Swift-Hohenberg equation for the
scalar variable Q(r, t) in two dimensions:

= [I'+((r, t)]Q —(1+V' ) Q —@ +rl(r, t), (1)

where we have nondimensionalized all the quantities.
This equation is valid close to the onset and in the limit of
infinite Prandtl number, so mean flow efFects are ignored.
The coeKcient of the linear term is the control param-
eter, and ((r, t)is an external no'ise which comes from
assuming that this control parameter fluctuates around
a mean value I'. rl(r, t) is the internal noise. Both noises
are Gaussian and white with zero mean and correlation
2DIi (r —r') b'(t —t'). D = DI is the intensity of the
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—S(q, t) = 2 I'+ D@ —(I —2q + q ) S(q, t)
Ot

1 '1
+2DI + 2D@ 2a) S(q, t) dq,

internal noise and is proportional to the temperature,
whereas D = D@ is the intensity of the external noise,
and is a second independent control parameter.

The transient and steady-state properties of this model
are well known for the case D@ = 0. For a fixed
small DI and I' ( I

„

the system is in a homoge-
neous state with small random fluctuations induced by
the additive noise. For I' ) I', there is a transition in
which the system evolves from the homogeneous state
to a convective ordered state composed of rolls. By
increasing DI this state becomes more disordered and
could even disappear. The transition can be character-
ized by means of the structure function of the system

S(q, t) =
& (g(q, t)g( —q, t)), which is the Fourier trans-

form in space of the two-point correlation function [20].
In order to study the effects of the multiplicative noise
we analyze the behavior of the structure function cor-
responding to Eq. (1). The equation for the evolution
of the structure function can be found by means of any
standard stochastic method [24]. When calculating the
average, the contribution of the additive internal noise
does not change the deterministic stability condition of
the linear analysis. However, due to the multiplicative
character of the external noise, we find a new contribu-
tion coming from that term. In particular, in the equa-
tion for (Q, Q~) (where the subscripts denote a discrete
lattice cell of size 62: x Ax), the new contribution of
the multiplicative noise ((,g, Q~) could be calculated by
means of Novikov's theorem [25]:

D@ D@,~., (c*v,) +
In the linear approximation, the resulting equation for
the structure function is

where D@ =
&

., and we have considered qAz ( 1. The
term proportional to D@, which contributes to the lin-
ear stability analysis, comes from the last term in Eq.
(2). The integral term of Eq. (3), which couples all the
Fourier modes, comes from the term of Eq. (2) which
contains b,~. This term is always positive, so it will al-
ways have a destabilizing effect, if any.

Thus the presence of a multiplicative noise leads to the
existence of an effective noise-dependent control parame-
ter, I'+ D~. Therefore any perturbation of the homoge-
neous state will always grow if the condition I'+ D~ ) I',
is obeyed. Hence, linear analysis predicts that the system
under the presence of multiplicative noise will leave the
homogeneous state in situations for which I' ( I', . The
nonlinearity will then stabilize the system in an ordered
state.

We have also performed a numerical simulation of Eq.
(1) in a two-dimensional lattice of 128 x 128 cells with a
mesh size Lx = 0.4870. Integration in time was done by
means of a standard Euler algorithm [26) with a time step
Lg = 1.7 x 10 . A Gnite-difference scheme was used to
perform the integration in space [26]. Additive and mul-

tiplicative noise were introduced into the algorithm by
means of a standard procedure [27]. The special values
of the space and time steps used were imposed by a von
Neumann stability analysis of the algorithm [13,26]. In
Fig. 1, we present results for three different situations.
Fixed boundary conditions have been used (field and nor-
mal derivatives are zero at the boundaries). In Fig. 1(a),
we present the results for a case with I' = 0.37 above
its critical value (ordered state), and where only internal
noise is considered (D~ = 0 and DI = 0.001). As ex-
pected, the characteristic rolls are obtained. In Fig. 1(b)
results for the same intensities of the noises (D~ = 0 and
DI = 0.001) but with I' = —0.05 ( 0 below the criti-
cal value are shown. No ordered pattern appears at this
point. In Fig. 1(c), we present the results corresponding
to the case in which multiplicative external noise is also

(b) (c)

FIG. 1. Patterns corresponding to the same integration time (equal to 150 nondimensional time units) for the cases: (a)
I' = 0.37, D~ = 0, (b) I' = —0.05, D~ = 0, (c) I' = —0.05, D~ = 0.1. DI = 10 for all cases. The contrast is the same for the
three figures.

1543



VOLUME 71, NUMBER 10 PHYSICAL REVIEW LETTERS 6 SEPTEMBER 1993

0.20— 0.25—

0.15— 0.20—

0.10—

0.05—

0.00

—0.05
0 10 20

I

30

0.15—

0.10—

0.05—

0.00—

—0.05
—0.4

I

I

I

I

I

I

I

I

I

I

I

~ I

I

I

I

I

I

I—0.2

o o

0.0 0.2 0.4

FIG. 2. Results for the transmitted flux versus time for a
subcritical I' = —0.05 with a small additive noise DI = 0.001.
The dashed line corresponds to D~ = 0 and the solid line to
DE = 0.1. The circles represent the numerical integration of
Eq. (3) and the dotted line is the simulation of the linear
version of Eq. (1), both of them for the case Ds = 0.1.

taken into account (D@ = 0.1 and DI = 0.001). I' has
the same value as in Fig. 1(b), that is, below the critical
deterministic value. In this case the characteristic pat-
tern of the convective rolls also appears. This pattern is
very similar to that induced by a supercritical value of
I' [Fig. 1(a)], but very different from the homogeneous
pattern which appears for a subcritical value of I' [Fig.
1(b)].

In Fig. 2 the perpendicular transmitted flux, which
is defined as J(t) =

& f g (r, t)dr [2] and is proportional
to the Nusselt number, is given as a function of time
for the situations described in Figs. 1(b) and 1(c). Pe-
riodic boundary conditions are used now because they
are required to compare with theoretical results, since in
our analysis the Fourier lattice is periodic. The flux is
zero for the homogeneous case of Fig. 1(b), and reaches
a nonzero steady value for a not very large intensity of
the external noise. In this figure, theoretical results ob-
tained from a numerical integration of Eq. (3) are in-
cluded. We obtain excellent quantitative agreement in
the short-time regime. Furthermore, we also present re-
sults of the numerical simulations of Eq. (1) for the linear
case (@s = 0), which agree with the linear theory in the
complete temporal regime, as expected. In Fig. 3 the
stationary flux J,& for a small intensity of the additive
noise (DI = 0.001) is shown for two different situations,
with and without multiplicative noise. In both cases, the
flux follows the same linear dependence against E' but
there is a clear positive shift proportional to the inten-
sity of the multiplicative noise. We can thus obtain large
enough values of the flux from a not very large D@ and a
subcritical value of I'. The threshold value of I' given by
the linear analysis for this case is approximately —0.17,
in excellent agreement with the numerical simulations of

FIG. 3. Steady flux versus I' for D& = 0 (circles) and
Ds = 0.04 (full triangles). The critical value of F predicted
by the linear theory is indicated by a broken line.
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FIG. 4. Structure function at t = 150 for the three cases
in Fig. 1: (a) circles, (b) squares, (c) triangles. Dashed lines
are a guide for the eye.

Fig. 3 [28].
In Fig. 4, we present the results for the structure func-

tion calculated from our simulations for the three differ-
ent cases of Fig. 1. For the two patterns of Figs. 1(a)
and 1(c), we obtain almost the same structure function
and both are very different from the homogeneous case
of Fig. 1(b). The fact that both patterns are very similar
is an interesting fact that requires to be studied in detail.

In this paper, we have discussed the effects of multi-
plicative noise in a spatially extended model. A com-
plete description of these effects would require additional
theoretical and numerical work. On the other hand, al-
though there could be some practical diKculties to im-
plement spatially extended multiplicative noise, experi-
mental studies following the line opened by recent works
on liquid crystals and other systems [23] would be of in-
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