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Turing patterns involve regions of different chemical compositions which lead to density gradients
that, in liquids, are potentially unstable hydrodynamically. Nonlinear hydrodynamics coupled with a
model of Turing pattern formation show that convection modifies and coexists with some Turing patterns
and excludes others, and thereby plays a significant role in pattern selection.

PACS numbers: 47.20.Bp, 47.70.Fw, 82.20.Mj

In 1952, Alan Turing proposed a chemical pattern for-
mation mechanism based solely on a reaction-diffusion
model [1]. It is believed that this mechanism plays a cru-
cial role in biological morphogenesis, the development of
pattern and form in the embryo. Recent chemical experi-
ments have shown the existence of Turing patterns [2,3].
These patterns are formed when the homogeneous steady
state loses stability and evolves into a state which consists
of regions of different chemical composition. The result-
ing chemical gradients may lead to mass density gra-
dients that render the patterns hydrodynamically unsta-
ble. For these reasons, the first experimental observations
of Turing patterns took place inside a polyacrilamide gel
designed to avoid fluid motion. Further experiments
show that Turing patterns also exist in liquids confined in
capillary tubes [3]. In the present work, we study the re-
lation between Turing patterns and convection. This
study is relevant to further experimentation in liquids and
may be useful in understanding problems in areas where
Turing pattern formation plays a role, such as biological
morphogenesis. The importance of convection in chemi-
cal pattern formation has been determined in previous ex-
perimental and theoretical work involving chemical
waves. In experiments on the iodate-arsenous acid reac-
tion [4] and the Belousov-Zhabotinsky reaction [5], the
speed of the chemical wave depends on the thickness of
the chemical layer in petri dishes, thus indicating the
presence of convection. It has been established that con-
vection modifies the chemical front in vertical capillary
tubes, from a flat convectionless front to a curved convec-
tive front [4,6,7]1. These experiments indicate that con-
vection plays an important role in chemical wave propa-
gation and suggest that convection may also be important
in Turing patterns.

We choose the standard Schnackenberg model as our
model of Turing pattern formation [8,9] and couple it to
the hydrodynamic equations of motion. Since the hydro-
dynamic parameters (density gradient, viscosity, etc.)
have not been measured yet, we estimate them from the
ones measured for the iodate-arsenous acid reaction. The
uncertainty in having a complete set of parameters that
corresponds to a particular system allows the use of the
Schnackenberg model instead of a more realistic one.
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The Schnackenberg model consists of four reaction steps:
ki
A— X,
ky
X— products,
ks
2X+Y—3X,
ka
B—Y.

The pool chemicals 4 and B remain constant while X
and Y obey the mass action law. We assume that the
density p varies linearly with the concentration X:

p=poll —a(X —Xy)].

Here, a is the coefficient of linear expansion and pg is the
density when X =X, the reference concentration. In this
work we assume that a is positive; consequently, the den-
sity is lower at higher concentrations of X. We neglect
thermal expansion which may arise in exothermic reac-
tions. The Schnackenberg model, coupled with hydro-
dynamics, provides the equations of motion for the sys-
tem:

v

+(V-VIV=—Lyp PP g2y
ot o Po
V-V=0,
3%

E—+(V-V)X=DXV2X+1<,A — ko X+k3X2Y,

and

%—t):+(V-V)Y=DyV2Y+k4B—k3X2Y.
Here, V is the fluid velocity, P is the standard reduced
pressure which is related to the pressure p by P=p
+pogz, g is the acceleration of gravity in the vertical z
direction, and v is the kinematic viscosity. The density
difference is included only where it modifies the large
gravity term. We consider only two-dimensional motion
confined to the x-z plane. Since the velocity has zero
divergence, we make use of the stream function y and the
vorticity @ to eliminate the reduced pressure. The com-
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ponents of the fluid velocity are related to the stream
function and the vorticity by

Vx=a Vz=—ﬂ

9z’ ox ’
and
0=Viy.
We introduce dimensionless variables
t’——_..v_t '—-_l_ d=& =L_212.
L2 9 x Lx’ DY, y DX b
_ki [k ), ke[ k]
k2 kz ’ k2 k2 ’
- ﬁ |/2X ~ _k_3_ 1/2Y
u k , U X, s
L L?
Vi=—V, p'= P, v'=vylv, o'=w0/v,
Dx poDyv v
3 [k 1/2
Ra=289L" | X2 -V
va k3 ’ DX

The dimensionless parameter Sc is the Schmidt number
and Ra is analogous to the Rayleigh number for thermal
convection. The length L is the typical length scale of the
system to be defined later. With these substitutions, the
governing equations become

S0 =__‘La( ) +&ﬂ+v2w

ot 9(x,z) Sc 93 ’
SCQ =SCM+V2u+y(a —utu?),
ot 9(x,z)
Sc—ai =SCM +dvio+y(b—u?)
ot d(x,z) ’
0=V,

where we have dropped the primes and define

V1S _ 81 8f2 _ 8f2 v
d(x,z) dx Oz Ox 0z

We here consider Turing patterns confined in rectangu-
lar boxes, demanding no chemical flow and no slip at the
walls. The parameters a, b, and d determine the stability
of the homogeneous convectionless steady state. The set
of parameters which leads to Turing pattern formation
has been studied extensively elsewhere [8,9]. Since we
are interested mainly in the effects of hydrodynamics on a
well-developed pattern, we shall use a set of parameters
that lead to a convectionless Turing pattern, namely,
a=0.14, b=1.1, and d =20. In one dimension, the Tur-
ing pattern develops a characteristic wavelength. Choos-
ing the length scale L to approximate half the wavelength
leads to y=40. In the iodate-arsenous acid reaction the
diffusion coefficient is D =2x 10 ~3 cm?/sec and the kine-
matic viscosity is v=9.2x10"3 cm?/sec; hence the

Schmidt number is 460. In Turing patterns these param-
eters may be different; our calculations are carried out
with Sc =200 as a reasonable value. The above equations
are solved numerically using a rectangular mesh. The
mesh size is varied to address the computational needs of
each particular case. The spatial derivatives are calculat-
ed using central differences and a five-point expansion is
used to approximate the Laplacian. The time evolution is
calculated using an alternate direction implicit scheme
(ADI) [10], and the Poisson equation is solved using a re-
laxation technique [11].

A necessary condition for a steady convectionless Tur-
ing pattern can be obtained from the equations of motion
with zero velocity and no time dependence [12],

0=—VP+(p—polg.
Taking the curl, we obtain
0=gxVp,

so the density gradient must be in the same direction as
the gravitational field. Any Turing pattern with a hor-
izontal gradient must exhibit convection. All the experi-
ments to date have observed only patterns with vertical
and horizontal gradients. This fact is independent of the
particular reaction-diffusion mechanisms that lead to the
pattern, so the results obtained with the Schnackenberg
model can be extended to other models.

We consider several cases of highly confined Turing
patterns in rectangular boxes. The size of the boxes are
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FIG. 1. Concentration of the variable u for a Turing pattern
confined to a 1 X2 box; (a) without convection and with a chem-
ical gradient in the vertical direction and (b) without convec-
tion and with a chemical gradient in the horizontal direction.
The lighter regions represent higher concentrations of u and
lower mass densities. (Mesh size 36x18.)
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FIG. 2. Concentration of the variable u for a Turing pattern
confined to a 1x2 box; (a) no convection and chemical gradient
in the vertical and the horizontal directions and (b) with steady
convection. The lighter regions represent higher concentrations
of u and lower mass densities. (Ra=60; mesh size 36x18.)

of the order of a few wavelengths and the discretized
equations on a rectangular mesh can be integrated using
a reasonable amount of computer time. We do not treat
extended Turing patterns because they will require a very
large mesh and much longer computations. We first ana-
lyze Turing patterns in boxes of height 1 and length 2 in
dimensionless units. In this case, we find three types of
convectionless patterns (and their symmetric counter-
parts) with concentration profiles shown in Figs. 1(a),
1(b), and 2(a). To test their hydrodynamic stability, we
study the time evolution of small random perturbations to
the convectionless patterns. The convectionless state in
Fig. 1(a) is stable if the lighter fluid (higher values of u)
is above the heavier fluid. The inverse configuration
(light below heavy) is stable for Ra < 70 and for Ra= 90
the lighter fluid moves above the heavier and convection
stops. The second pattern consists of three vertical re-
gions [Fig. 1(b)]. As we previously discussed, because of
the density gradient in the horizontal direction there is no
steady convectionless state. Any value of the Rayleigh
number will result in convection. This convection makes
the pattern unstable and later becomes the first pattern
with the lighter fluid on top. The third pattern has a den-
sity gradient in both the horizontal and the vertical direc-
tions [Fig. 2(a)]. In this case convection is always present
as long as the Rayleigh number is different from zero.
The system evolves with time into a steady convective
state and modifies the Turing pattern as shown in Fig.
2(b). The convective pattern resembles the original pat-
tern, but the upper and lower portions are no longer sym-
metric. The velocity field in this system consists of two
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FIG. 3. Velocity field for a Turing pattern in a 2X1 box.
The chemical concentrations correspond to Fig. 2(b).

convective rolls (Fig. 3) with fluid rising on the sides and
falling in the middle. The rolls are not symmetric with
the upper flow being stronger in the region where the
lighter fluid is placed below the heavier fluid due to buoy-
ancy. In this case, the distortion of the Turing pattern
caused by convection is noticeable even for Ra==20.
Convection is present for all Rayleigh numbers and con-
sequently the distortion of the convectionless Turing pat-
tern is always present.

In the iodate-arsenous acid reaction the fractional den-
sity difference is about 10 ~%; consequently we set its ana-
log a(ka/k3) " to this value. We estimate Ra =0.26 us-
ing previously defined constants for the iodate-arsenous
acid reaction and Turing pattern wavelength of 0.2 mm
(g=980 cm/sec?). For this estimate of the Rayleigh
number, the distortion in the convective Turing pattern is
small due to the small fluid velocity. If the Turing pat-
tern wavelength (or the density gradient) increases by
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FIG. 4. Concentration of the variable u for a Turing pattern
confined to a 3.4% 1.7 box; (a) without convection and (b) with
convection. The lighter regions represent higher concentrations
of u. (Ra=30; mesh size 64 x32.)
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FIG. 5. Velocity field for a Turing pattern in a 3.4 1.7 box.
The chemical concentrations correspond to Fig. 4(b).

changing the chemical composition of the mixture, then
Ra increases and the fluid effects will become more im-
portant. If Ra> 193, the convective pattern evolves into
a convectionless pattern with the lighter fluid above the
heavier fluid, as in the case of the second pattern.

We have also considered a box of dimensionless size
3.4x1.7 which accommodates a more extended pattern.
Here we restrict our attention to one of a number of pos-
sibilities for Turing patterns in this geometry. In the con-
vectionless case [Fig. 4(a)l, there is a symmetry about a
horizontal line in the middle of the box. This symmetry
makes the lower and upper boundaries indistinguishable;
we cannot recognize which way is up. For Ra =30, there
is a significant distortion due to the rising lighter fluid
[Fig. 4(b)]. Convection is always present due to the gra-
dient in the horizontal direction, with stronger convection
for larger Rayleigh numbers. The fluid velocity field is
shown in Fig. 5; the velocities are higher at the right side
of the box causing the distortion of the circular region.
Higher values of u are found at the upper boundary since
higher values of u correspond to lighter fluid.

We have shown here the effects of hydrodynamics in
Turing patterns based on the ideal Schnackenberg model.
We found that not only can convection coexist with Tur-
ing patterns, but that it can also alter them significantly
and can exclude some patterns predicted by the reaction-
diffusion theory. We have shown that certain patterns
will evolve into other patterns. This result indicates that
convection plays an important role in pattern selection.
This is important for Turing pattern formation with
growing domains, which have an impact on biological
problems. It has been shown that for reaction-diffusion
models, the shape of the fully grown domain depends on
the shape of the initial domain [9]. When convection is
allowed, the pattern in the grown domain will evolve into
another type of Turing pattern that can sustain convec-
tion. In more extended patterns, the fluid effects might
become more important because the density gradient in
the horizontal direction precludes a convectionless state.
The effect is still small for estimates based on the iodate-

arsenous acid reaction. However, the fluid velocity alters
the patterns at relatively low Rayleigh numbers. New ex-
periments in this regime might be designed to test these
effects. The asymmetry caused by convection should be
observable and may be tested by physically inverting the
device. Since the Rayleigh number is proportional to the
wavelength to the third power, fluid effects will become
important for larger wavelengths. For this reason it may
be difficult to observe patterns of larger wavelengths in
liquids since the fluid effects are stronger. Buoyancy is an
important mechanism in pattern selection as certain pat-
terns cannot exist if the density gradient is too large.

Further studies in convective Turing patterns may yield
oscillatory convection if the fluid density varies with both
chemical concentrations and temperature. It may also
play an important role when chemical turbulence takes
place in liquid solutions. It will also be of interest in
studying the effects of gravitational fluid motion on a re-
cent model of chemical pattern formation [13] based on
differential fluid flow.
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FIG. I. Concentration of the variable « for a Turing pattern
confined to a 1 %2 box; (a) without convection and with a chem-
ical gradient in the vertical direction and (b) without convec-
tion and with a chemical gradient in the horizontal direction.
The lighter regions represent higher concentrations of u and
lower mass densities. (Mesh size 36x18.)
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FIG. 2. Concentration of the variable u for a Turing pattern
confined to a 1x2 box; (a) no convection and chemical gradient
in the vertical and the horizontal directions and (b) with steady
convection. The lighter regions represent higher concentrations
of u and lower mass densities. (Ra=60; mesh size 36x18.)
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FIG. 4. Concentration of the variable v for a Turing pattern
confined to a 3.4x1.7 box; (a) without convection and (b) with
convection. The lighter regions represent higher concentrations
of u. (Ra=30; mesh size 64x32.)



