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Nonlinearity of Pancharatnam's Topological Phase
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Since Berry introduced topological phases to describe the adiabatic transport of the spin of particles in

parameter space, they have become a practical and descriptive concept for understanding interference
phenomena in many quantum mechanical systems. For the photon two diAerent applications of this con-
cept were found in crystal optics: (1) the optical activity of helically wound optical fibers and (2) the
development of the state of polarization on the Poincare sphere. We present a remarkable optical "non-
linearity" of certain polarizing interferometers, which we discovered by using the concept of the topolog-
ical phase on the Poincare sphere and we demonstrate it with a simple experiment.

PACS numbers: 42.25.Hz, 42.65.—k

In optics the use of descriptive visual models has al-
ways played a leading role in the understanding of the
basic concepts and their further developments. In crystal
optics the Poincare sphere is the most eff'ective instru-
ment for quickly acquiring detailed knowledge about the
evolution of light in anisotropic media [1,2]. Simple tra-
jectories on the surface of the Poincare sphere describe
the effect of optically active and birefringent plates or
fibers on the state of polarization of light and give an il-

luminating insight into the function of polarization optic
elements.

In 1956 Pancharatnam [3] investigated the eA'ect of an
analyzer P on the interference of two light beams with
diA'erent states of polarization Pi and Pq. He discovered
that the analyzer introduces a phase difference y between
the beams, which only depends on the solid angle 0 (i.e. ,

the spherical excess) of the triangle PiPqP on the Poin-
care sphere and not on optical path, dispersion, and color;
see Fig. l:

y= —
2 A(PtP2P) .

The idea that an analyzer introduces a phase difference
between two light beams is more another way of looking
at, rather than a new phenomenon in optics: Two plane
waves (Fig. 2) are well known to interfere constructively
or destructively after being resolved by a linear analyzer
(after passing through the linear analyzer) in the V or H
position. Using Pancharatnam's theorem, we would say
that the spherical excess 0 of the triangle Ot020 (see
Fig. 1) is zero for 0 in position V and 2tr in position H
(half of the surface of the sphere). Pancharatnam's
phase y is zero in the first case and —tt in the latter case.
Thus, the interference is constructive and destructive, re-
spectively.

Pancharatnam's discovery was remembered [4] when
Berry [5] described his phase in 1984 and it was then in-
corporated into the theoretical framework of adiabatic ro-
tations of spinors as a "geometrical" or "topological opti-
cal phase" [4,6-8]. With the methods of quantum
mechanics a generalization of Pancharatnam's result was
achieved. The dissipative nature of the resolving analyzer
was found to be not a necessary condition and the rela-
tion between the topological and dynamical phases for
general trajectories on the Poincare sphere was cleared
up. Equation (1) describes the geometrical phase
diAerence (Pancharatnam's phase) between two parts of

FIG. 1. Pancharatnam's theorem on the Poincare sphere. FIG. 2. A simple example of Pancharatnam's theorem.
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a coherent light beam, if one part is led around a closed
loop of solid angle 0 on the Poincare sphere.

This extension includes Pancharatnam s original state-
ment: A coherent light beam of polarization Qi is split
and one part is led around the closed loop Q|Q2QQ| of
geodetic lines (great circles); see Fig. 1. This introduces
a phase difference —

2 Q between the two split beams at

Q 1 which is conserved after their resolution by the
analyzer Q.

An example such as the problem above can of course
be analyzed with a simple picture like Fig. 2 or with other
methods like the Jones matrix formalism, but an evalua-
tion with Pancharatnam s phase is more descriptive and
formally simpler in the general case of arbitrary states of
polarization Q|Q2Q, where a perceptive superposition of
waves is not possible at all.

Several experiments verified Eq. (1) [9-121. In all
cases a coherent light beam is split and one part is led
around a variable closed path on the Poincare sphere by
means of crystal optic components which can move
mechanically. The two split beams with their different
history are then compared interferometrically. All trajec-
tories on the Poincare sphere are geodetic to avoid a
dynamical phase change which may cover the wanted
eA'ect. Frequency modulation techniques [9,10] and the
abandonment of the dissipative element (the analyzer P)
carry these measurements far away from the plain ar-
rangement of Pancharatnam's original idea and make
their interpretation less transparent. The complicated in-
terferometric equipment which has to be mechanically
very stable has perhaps led to the view that Panchar-
atnam's phase is an effect which is only of academic in-
terest. Only recently have interesting applications in

interferometry and optical switching been proposed
[13-15j.

Here we want to show that the experimental verifica-
tion and its interpretation can be very simple if one fol-
lows closely Pancharatnam's original idea. We measure
an exotic phenomenon which we discovered by using the
concept of Pancharatnam's phase and which is directly
proportional to it. This effect is a nonlinear behavior of
Pancharatnam's phase y for certain interferometer ar-
rangements which we will describe first. If two coherent
light beams of different state of polarization PiP2 inter-
fere after being resolved by an analyzer P to polarization
P, we expect them to have accumulated a phase dif-
ference y according to (1); see Fig. 3. P;, P (i =1,2) and
the orthogonal state P; lie on two great circles of the
Poincare sphere which enclose the spherical triangle
PiP2P with excess A together with the equator. When P
moves on the great circle LHRV in direction L and H, the
triangle 0 increases slowly if the angle h, =ZPiP2 is

small. But with P near H the two great circles P;PP;
open up very fast and coincide with the equator when P
reaches H. This means that 0 increases very fast in this
region and consequently Pancharatnam's phase increases
in a very strikingly nonlinear way. We measured this

FIG. 3. Our experiment on the Poincare sphere.

effect as a shift of the interference fringes of a two-beam
interferometer. The fringe position depends only on the
initial constant phase of the two beams and on Pan-
charatnam's phase y(Q ) (1). With /VP =2', ZP i P2
=A, p =ZP iP =/P2P =arccos(cos2co cosh/2) spherical
trigonometry leads to

0 = 2arccos
sin2rocosh/2

sing

cos2co sink/2+2arccos
sing

(2)

P)

P2

FIG. 4. Our experiment.
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Our experimental setup (see Fig. 4) deviates from this
arrangement which leads to Eq. (2), but it is equivalent
to it as we will show below. Two slits of 0, 25 mm diame-
ter and 0, 5 mm distance serve as a two-beam interferom-
eter. They are covered by two tiny pieces of the Polaroid
sheet polarizer HN 22 with different orientation. The
slits are illuminated by a vertically polarized HeNe-laser
beam. We measure the lateral position of the interfer-
ence fringes in the far field of the interferometer. Instead
of moving the analyzer P up along VLHR (see Fig. 3) we
shift the position of PiP2 down with the help of a cali-
brated Babinet-Soleil compensator (45', fast axis F) and
resolve with a fixed analyzer in the V position; see the
dotted lines in Fig. 3. The relevant triangle 0 is now

PiP2V. The equivalence of this setup with our original
one is shown as follows: A beam of polarization V is

split; one part is led around the spherical triangle VPiP~
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back to V, the other one around VP2P2 back to V in the
opposite (negative) sense. The geometric phases gained
by these round trips are given by yseo(VP~P~) = —

~ &1
and ys, (VP2P~) =+ 2 D2 with Ol = 02= 2 (4cosinh/2
—0). The two arcs /P~~P~ and /PqP2 are not geodetic
lines on the Poincare sphere and contribute with a
dynamical phase. The dynamical phase gain corresponds
to an additional rotation of the spinor which represents
the state of polarization of the light on the Poincare
sphere around its eigenvector [7]. It is given by
yd„„= —a/2cosP where a is the angle of rotation —in our
case 2'—and P is the angle between the axis of rotation
(F) and the eigenvector OP ~ or OP2. We obtain
@de„(P)PI)=+rosin&/2 and yd„„(P2Pz) = —cosine'/2
Adding up the contributions of the dynamical and geome-
trical phase gains for the two round trips and forming
their diAerence one finds for the phase diAerence of the
beams after their path y =

y2
—

y~
= —

2 0 as stated
above.

Figure 5 shows the shift of four interference fringes
with compensator position 2'. The shift of the fringes is
fast for 2 near (n+ 2 )2x and slow for 2' near n2zc

n =0, 1,2, 3, . . . as expected from our qualitative estima-
tion.

The intensity of the fringe pattern of two beams of in-
tensity J ~ and J2 with polarization P [ and P2, respective-
ly, after being resolved by the analyzer P to the same
state of polarization is given by [2,3]

J=J|cos b+ Juncos a+2 JJ~J2cosacosbcos(6+y),
(3)

with 2a =ZP]P, 2b =ZP2P. In our symmetrical case with
J|=Jq= 2 Jo and cos2a =cos2b =cos2rocosh/2 we ob-

tain

J =Jocos (1+cos2rocosh/2) .
6+y

2

This is a completely modulated intensity function with a
fringe contrast V=1 in the whole parameter space. 6+ y
describes the lateral fringe position.

Figure 6 shows a measurement of the shift of one
fringe in comparison with the theoretical curve (1) (2).
The agreement is very good. The "nonlinear" behavior of
Pancharatnam's phase increases when h, =ZP~P2 de-
creases, i.e., when the states of polarization Pi and P2 lie
close together on the Poincare sphere. Very abrupt phase
changes can be obtained but one pays with a rapid loss of
intensity of the fringe pattern in the instability region
around 2= x. The fringe intensity J(2=x) goes down
with 1

—cosh/2; see Eq. (4).
Bhandari [14] has described and measured the un-

bounded nature of Pancharatnam's phase and Martinelli
and Vavassori [13] have explained its usefulness for end-
less polarization control. The continuous shift of the
fringes over several periods 2m in Fig. 5 is not unbounded
in our experiment since the shift of polarization Pi, P2
with the compensator cannot be endless. A simple change
of the experiment using a rotating linear analyzer for P
and two light beams with the same small ellipticity but of
different sign shows the same fringe behavior. The con-
tinuous nonlinear shift of the interference fringes with ro-
tating analyzer P can directly be seen in an ocular.

The nonlinear behavior of Pancharatnam's phase in

special interferometers can be used to switch light faster
and with less retardation between the beams. In our case
a phase amplification of 1 order of magnitude between
the compensator and the two slit interferometer occurs.
Also a "phase rectification" is possible if the working
point of the compensator is shifted to the bending region
of the characteristic curve (Fig. 4). These effects can be
applied for precise measurements of polarizer orienta-
tions.
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Pancharatnam's theorem.
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atnam's theorem (line).
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Pancharatnam's phase depends only on the area 0 on
the Poincare sphere and is in principle achromatic. This
can be useful for applications in optical communication
where interferometric devices switch many different spec-
tral channels. In an interferometer which is scanned with
this method all the light beams pass through the same
variable element —the analyzer P—,so their spatial sep-
aration can be very small. The phase modulation ampli-
tude of a polarizing hologram can be actively varied in

this way.
We want to emphasize that Pancharatnam's phase is

an exciting concept in optical education, helping the stu-
dent and the experienced practitioner to acquire a better
understanding. ]t shows the superiority of group theoreti-
cal over arithmetical methods and will hopefully inspire
the development of new devices and strategies in optics.
The discussion of the nature of topological phases in op-
tics [16] shows that a simple crystal optic effect has deep
roots down to a level where our basic understanding or
better misunderstanding of physics is demanded.
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