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Topological Censorship
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All three-manifolds are known to occur as Cauchy surfaces of asymptotically flat vacuum spacetimes
and of spacetimes with positive-energy sources. We prove here the conjecture that general relativity
does not allow an observer to probe the topology of spacetime: Any topological structure collapses too
quickly to allow light to traverse it. More precisely, in a globally hyperbolic, asymptotically flat space-
time satisfying the null energy condition, every causal curve from 2 to 2+ is homotopic to a topologi-
cally trivial curve from 2 to 2+.

PACS numbers: 04.20,Cv

Because every three-manifold occurs as the spatial to-
pology of a solution to the Einstein equations [1], one
might ask why such topological structures are not part of
our ordinary experience. A key part of the answer is a
singularity theorem due to Gannon [2-4], showing that
any asymptotically Oat spacetime with a nonsimply con-
nected Cauchy surface has singular time evolution if it
satisfies the weak energy condition. Only topological
structures comparable in size to the visible Universe or
small enough that quantum eA'ects play a crucial role in
their dynamics can survive from the big bang to the
present.

According to the cosmic censorship conjecture [5]
singularities forming to the future of a regular initial data
surface are hidden by an event horizon. If correct, the
conjecture suggests that any topological structures will

ultimately collapse within the horizon of a set of black
holes. This collapse is too rapid to allow observers to
traverse the wormhole throat for known exact analytical-
ly extended black hole solutions. Consequently one is led
to a related topological censorship conjecture [6]—that
no observer remaining outside a black hole has time to
probe the topology of spacetime.

A precise formulation of topological censorship re-
quires some standard definitions related to causal struc-
ture [7]. A spacetime M is globally hyperbolic if it has a
Cauchy surface Z; that is, M is the domain of dependence
D(Z) of a spacelike hypersurface, Z. A spacetime (M,
g,b) is asymptotically flat [8] if the following conditions
hold: (i) There is a conformal completion (M, g,b) where
M is compact with g,b

=0 g,b where 0 is vanishing on J
but has null gradient which is nonvanishing. (ii) The
boundary, 2 =M —M is a disjoint union of past and fu-
ture parts, 3+US, each having topology S XIR with
the lit's complete null generators. (Topological censor-
ship, however, does not require completeness in a future
direction. ) In this definition, 2+ and 2 are future and
past null infinity, respectively. A causal curve is any
curve which is nonspacelike. The causal future, J+(S),

of a set S is the union of S with all points in M that lie on
a future-directed causal curve originating in S. I'he
causal past, J (S), is defined as above with past substi-
tuted for future. The frontier or point set boundary of a
set A &X, with respect to the set X is given by
2 =MAX —A, where 2 =int(A) UA. Unless otherwise
stated, the frontier will be defined with respect to M.

The null energy condition is the requirement that
T,bk'k ~ 0, for all null vectors k'. It is implied by each
of the other common positive energy conditions: the
weak energy condition, the strong energy condition, and
the dominant energy condition [9]. The null energy con-
dition implies that the convergence of a congruence of
null geodesics cannot decrease and thus that initially con-
verging null geodesics have conjugate points. A weaker
form of energy conditions are averaged energy conditions;
their use for proving the existence of conjugate points is
due to Tipler [10]. In particular, Borde proved the aver
aged null energy condition (ANEC) also ensures this
property along with even weaker averages [11].

A spacetime satisfies ANEC if the integral of T,bk'k
is non-negative along every inextendible null geodesic
with aftine parameter A, and corresponding tangent k':
/AT, bk'k ~ 0. Finally, we denote by yo a timelike
curve with past end point in 2' and future end point in
2+ that lies in a simply connected neighborhood U of J.

We can now state and prove the topological censorship
theorem.

Theorem l.—If an asymptotically Aat, globally hyper-
bolic spacetime (M,g,b) satisfies the averaged null ener-

gy condition, then every causal curve from 2 to J+ is
deformable to yo rel J.

The proof is given below after Lemmas 1 and 2. It is
similar to the argument used by Morris, Thorne, and
Yurtsever (following a suggestion of Don Page) [12] to
show that three-dimensional wormholes are not travers-
able and to the proof of Gannon's singularity theorem.

The proof of our theorem is by contradiction. We as-
sume there is a nondeformable causal curve y from J to
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This curve will unwrap in the universal covering
space of M to yield a curve which connects two diA'erent

asymptotic regions in the universal cover. One then
shows that the unwrapped curve must pass through a
trapped surface. Finally, one shows that if the spactime
is globally hyperbolic, curves which pass through trapped
surfaces cannot be observed. However, this is in contrad-
iction with the assuinption that y was a causal curve.
Thus the existence of such a curve is in contradiction and
consequently the topology cannot be actively probed.

It may be helpful to illustrate this by considering the
simple example in Fig. 1 of an RP geon. Choose the
t =0 slice of Schwarzschild and, instead of extending it
across r =2M, identify antipodal points at the throat.
The toplogy of this spatial slice is RP —pt. The maxi-
mal evolution of this slice is a spacetime with spatial to-
pology RP —pt. Its universal covering space is the max-
imally extended Schwarzschild spacetime. Any nonde-
formable causal curve unwraps to a curve which connects
the two disconnected asymptotic regions in the covering
space and must pass through a trapped surface.

Since asymptotically Aat spacetimes can have multiple
disconnected asymptotic regions, 2 in general will have
disconnected components. Let J", be one such com-
ponent, and let M, =M U 2, be a partial conformal com-
pletion, with 0 =1 outside an open neighborhood of 2,
which intersects no other component of J. The proof uses
Prop. 9.2.8 of [7], slightly modified as Lemma 2, below,
which in turn relies on Lemma 1.

Lemma 1.—Let (At, g, )bbe any asymptotically fiat
spacetime with a simply connected Cauchy surface X.
Let 7' be a smooth closed compact orientable two-surface
in Z. Then no inner directed null geodesic from 7 with

respect to 2, is part of J+(7').
Proof of Lemma 1.—Let t be a time function (see [7],

p. 319) for which Z is a surface of constant t, and let

FIG. 1. The Penrose diagram for an RP geon. Each point
in the diagram is a two-sphere except for the left vertical
boundary, whose points are RP 's.

7'(t) be the orbit of 7' under diffeos generated by V't.
As Z is simply connected, the timelike surface 'T(t)
separates the spacetime into disjoint parts, interior and
exterior to the surface. Each inner-directed null geodesic
y from 'T that meets J+ must first intersect 7 (t) for
t &0 at a point p. But p is in the timelike future of T:
p E I+(7). Thus p cannot lie on J (7), and y cannot
be a generator of J(T). Q.E.D.

A congruence of null geodesics in an open set of a
spacetime is a family of null geodesics such that for each
point in the open set there passes precisely one null geo-
desic in this family. Of particular relevance are
congruences of null geodesics that are hypersurface or-
thogonal to a two-surface 7. The expansion of such a
null congruence is given by O=s'V, kb where s,b is the
metric of the two-surface and k' is the tangent vector
field to the congruence. A compact orientable two-
surface T is stIongly outer trapped if on the two-surface,
8&0 for an outer-directed hypersurface-orthogonal null

congruence. The next lemma is valid even with vanishing
expansion but the proof is simpler if we assume that the
expansion is strictly positive.

Lemma 2.—Let (JN„g,b) be an asymptotically Aat

spacetime that satisfies ANEC and has a simply connect-
ed Cauchy surface Z. Then no surface 'T, strongly outer
trapped with respect to 2„ intersects J (2,+).

Proof of Lemma 2.—The proof uses essentially the
same techniques as of Props. 9.2. 1 and 9.2.8 in Hawking
and Ellis [7]. If 7 intersects J (7,+), there is a causal
curve connecting 7' to 7,+. Hence J+(T) intersects

By definition, 2,+ is closed, and since the spacetime
is globally hyperbolic, J+ (5') is closed. Hence

tlat+('7)

is closed. If [2,+tl J+(V')] is empty, then

2,+A J+(7') is also open as a subset of 2,+, because
2,+ Il J+(7') =int[S,+ A J+(T)]U [1,+ A J+(7 )] . But
if 2+Ii J+(7) is both closed and open, then 7+ is

disconnected. However, by definition 2,+ is connected.
Therefore [2,+tl J+(7)] is not empty and it follows
that 2,+ A J (7 ) is also nonempty; J (V') intersects

A past directed null generator of J+('T) with future
end point at a point of 2,+ must have past end point at T
and can contain no conjugate point. By Lemma 1, the
geodesic must be outer directed from 7'. But ANEC and
8&0 imply that every outward null geodesic from the
outer trapped surface Y has a conjugate point within

finite affine parameter length. This is a contradiction, be-
cause the generators of J+(7 ) have infinite affine param-
eter length. Q.E.D.

Proof of Theorem 1.—Consider the universal covering
space [13] n: At M and the corresponding spacetime
(At, g,b), with g,b the pullback of g,b to At by n. By con-
struction A, is simply connected, and any point in M has
a simply connected neighborhood 2 whose inverse image

'(A) is the disjoint union of open simply connected
sets in A, . Each of these copies of 2 in At corresponds to
a homotopically distinct way of reaching A from a fidu-
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cial point of M, and we can choose the fiducial point to lie
on J +. The projection n, restricted to any single copy of
A, is an isometry.

Since the open neighborhood U of 2(M) is chosen to
be simply connected and M itself is not simply connected,
U will be covered by multiple copies of itself in At, which
will therefore have multiple asymptotic regions. Let
S'0&At be one of these copies, an open connected neigh-
borhood of a single asymptotic region of At. Construct a
partial conformal completion (Atp, g b) by adjoining a
single copy of Z(M) to Vlp. Then (At, g,b), with one
asymptotic region singled out, satisfies the requirements
of the Lemmas.

Suppose the theorem is false. Then there is a causal
curve y in M, from 2 (M) to 2+(M), which is not de-
formable to yp relative to Z(M). The curves yp and y
can be lifted to curves I o and I in At that meet the same
point of 20+. Because the construction of At assigns dis-
tinct points to homotopically diA'erent ways of reaching
the same point of M, the curves I 0 and I will join
2p+ (At ) to different copies of the asymptotic region

(M). Because yp lies in the simply connected neigh-
borhood U of 2(M), I p will lie in the neighborhood Vlp of
Jp(At), while I will join Sp+(At) to another copy of U.
In this second asymptotic region, it will intersect spheres
of arbitrarily large radii.

These large spheres appear outer trapped as seen from
the first asymptotic region, S'0. Let Z be the covering
space of a Cauchy surface Z of M and let 4 be a sphere
in an asymptotic region of Z diA'erent from the one con-
taining Bo. If we define outer-directed curves from any
sphere S' to be those that reach %0 without intersecting
S' a second time, then the outer directed curves from S'
are curves from its concave surface —curves that would
ordinarily be called inner directed by an observer in the
asymptotic region near 1'. Since the spacetime is asymp-
totically flat, one can always pick S' so that the outer
directed null congruence has 0&0. As I is causal, this
implies that there are strongly outer trapped surfaces that
intersect J (2p (At)). But this contradicts Lemma 2.
Hence any causal curve y from J to J'+ must be de-
formable to yp. Q.E.D.

An alternate proof to the more standard proof given
above can be obtained using recent techniques developed
by Penrose, Sorkin, and Woolgar [14] to prove a space-
time version of the positive energy theorem. They con-
struct a partial ordering of all causal curves joining a
given generator of 2 to a given generator of J+, calling
a curve faster if it arrives earlier at 2+ and leaves later
from 2 . A fastest curve is a null geodesic without con-
jugate points if the curve does not line on J. The same
argument, restricted to curves in a given homotopy class,
shows the existence of a null geodesic without conjugate
points lying in that homotopy class and joining J to 2+
as needed to prove Theorem 1.

The consequences of Theorem 1 can be seen by consid-

ering a globally hyperbolic spacetime with non-Euclidean
topology, assumed for simplicity to have one asymptotic
region. Its universal cover will be a spacetime with multi-
ple asymptotic regions. Suppose that an observer wishes
to probe the topology of her spacetime and communicate
the results of her measurements to a distant observer near

In order to detect a topological geon, her path or the
path of her communication must traverse the geon and
exit to J'+; but this is forbidden by the theorem. Only
observers and light rays that do not loop around a factor
of the topology can communicate with J +, and such
causal curves do not detect the existence of non-
Euclidean topology. Thus general relativity prevents one
from actively probing the topology of spacetime.

However, note that one can passively observe that to-
pology by detecting light that originates at a past singu-
larity. This is in keeping with the cosmic censorship con-
jecture which allows an observer to see a singularity in

her past; similarly, the active topological censorship
theorem proved above allows light rays to pass through a
point x and then traverse homotopically distinct paths to
a distant observer if the rays originate at a past singulari-
ty. The RP geon of the identified Schwarzschild ge-
ometry provides an example. In Fig. 1, an observer 0
outside the black hole can passively detect the topology,
receiving signals that traverse the homotopically distinct
paths c and c' from a point x of the nonsimply connected
Cauchy surface Z. Followed back to the past, these null
geodesics eventually hit the singularity at r =0. In accor-
dance with the theorem, to passively detect the topology
one must see a signal that originates in a white hole rath-
er than 2 (and hence at a singularity if cosmic censor-
ship holds and if singularities are generically spacelike).

Even passive detection of spacetime topology is allowed
only for a restricted set of topologies. A Cauchy surface
of an asymptotically flat spacetime with a single asymp-
totic region is a connected sum of a set of prime factors.
There are a countably infinite number of prime three-
manifolds. By a natural way of counting, most are
K(x, 1 )'s, a class of manifolds that includes the hyperbol-
ic spaces, the product of a circle and any closed two-
manifold of nonzero genus, and the ten closed flat mani-
folds. A consequence, known to Schoen and Yau, of their
proof of the positive-energy theorem [15] is that all
K(~, 1) factors are hidden by apparent horizons. Because
apparent horizons are always within real horizons in

asymptotically flat globally hyperbolic spacetimes, passive
topological censorship is enforced: Topology in this class
is invisible to observers outside black holes. Although the
result not new, it is not explicitly stated in the literature.

Theorem 2.—Given any asymptotically flat initial data
set (Z, h,q,p,b) with sources which obey the dominant en-
ergy condition, all nontrivial topology due to a K(x, 1)
prime factor is surrounded by a two-sphere which is an
apparent horizon.

Here h, b and p,b are the three-metric and extrinsic

1488



VOLUME 71, NUMBER 10 PH YSICAL R EVI EW LETTERS 6 SEPTEMBER 1993

curvature on Z, and the definition of asymptotic flatness
for initial data is that of [15]. A two-sphere 7CZ is an
apparent horizon of a spacetime if the outgoing orthogo-
nal null geodesics have zero convergence on T. In terms
of the initial data, the condition is (k,b+p, b)s =0,
where s,b and k,b are the two-metric and extrinsic curva-
ture of T as a submanifold of Z. Theorem 2 is a corol-
lary of the following lemma, which summarizes part of
the Schoen- Yau proof.

Lemma 3.—Let (X,h,b,p,b) be any asymptotically []at
initial data set with sources which obey the dominant en-
ergy condition. Then Z satisfies Z —int(K) =N —C
where K is a compact submanifold of X„C is the interior
of a disjoint union of three-balls, N is a three-manifold
which admits an asymptotically flat metric with zero sca-
lar curvature, and t)[Z —int(K)] is a disjoint union of
two-spheres which are apparent horizons.

To obtain Theorem 2 from Lemma 3, note that any
three-manifold with an asymptotically flat metric of zero
scalar curvature has a compactification admitting a
metric with positive scalar curvature. Gromov and Law-
son show that no such three-space can contain K(tr, 1)'s
as prime factors. Consequently, any K(tr, 1)'s in X must
be behind the apparent horizons.

Finally, note that the RP geon is a counterexample to
any hope that the Shoen-Yau result could be extended to
all topologies. We believe that Theorem 2 is in fact
sharp —that passive topological censorship hold for no
other prime factors.

To prove active topological censorship, we used the
averaged null energy condition, the weakest of the stan-
dard conditions. However, it is clear that any energy con-
dition which implies that outward directed null con-
gruences with 0&0 have conjugate points will suffice in

our proof. Several such weaker conditions are known
[11]. This suggests that the theorem may hold for semi-
classical gravity, in which the source is the expectation
value of a renormalized stress tensor. There are now
several results which rely on conditions weaker than the
averaged weak or averaged null energy conditions and
which may be valid in a semiclassical theory: The chro-
nology protection theorem of Hawking [16], the
Penrose-Sorkin-Woolgar proof of a positive energy
theorem [14], Gannon's theorem, and our active topologi-
cal censorship theorem. Wald and Yurtsever [17] show
that ANEC is violated by the renormalized stress tensor
of free fields in generic spacetimes, and the question is
whether there is a condition weak enough to be satisfied

by the semiclassical stress tensor and strong enough to

enforce the theorems.
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