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Slow Dynamics from Noise Adaptation
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We discuss a new mechanism generating long range temporal correlations in dynamical systems
coupled to a source of white noise. The external noise induces dynamical events uncorrelated on a
logarithmic time scale and produces a fluctuating output with "1/f" power spectrum. This behavior
requires a complex phase space with many traps, which can arise due to strong cooperative effects.
As a demonstration, we numerically analyze a system of many coupled degrees of freedom, which
is externally driven and subject to a white noise perturbation. We Gnd both Poisson statistics for
events in log(time) and the 1/f power spectrum.

PACS numbers: 05.40.+j, 02.50.—r, 03.20.+i

Little is known theoretically about driven dissipative
systems with very many fixed points. Studying an ex-
arnple in detail can thus provide significant insights on
how phase-space properties are refIected in the relaxation
behavior. In this Letter we show for a particular model
that white-noise-induced hopping events between attrac-
tors only decorrelate on a logarithnuc time scale. Any
variable changing with the events is then slow relaxing
and has a (nonstationary) 1/f power spectrum [1], in-
dependently of tuning parameters. The condition is that
attractors of all "depths" exist close to any point in phase
space. Since the coarse-grained dynamics is then deter-
mined by the noise history, we call the mechanism noise
adaptation.

The mechanism is demonstrated by extensive simula-
tions of a large automaton, mathematically akin to the
mappings introduced by Coppersmith and Littlewood [2]
to study pulse-duration memory effects in charge-density
waves (CDW), and used by Tang et al. [3] to discuss the
concept of phase organization.

Our model is meant to describe phase slips in CDW, a
possible source for the low frequency broadband noise ex-
perimentally found [4, 5] but not reproduced by the stan-
dard Fukuyama-Lee-Rice model [6, 7]. We believe that
our results should also apply to the statistics of jumps
between mode-locked states in ac driven CDW [8]. How-
ever, we here defer a discussion of CDW specifics, focus-
ing on general aspects.

In the sequel, we first define the automaton. Second,
we show analytically how its—idealized —features lead to
nonstationary 1/ f noise. Third, we describe the numeri-
cal verification of these features. Finally, we compare our
mechanism to other models with a slow dynamics.

We define variables o', on a square lattice (size 125x 125
was used in most simulations), which represent coarse-
grained phase velocities of the CDW, rather than phases.
The dynamics includes (1) the tendency of nonlinear cou-
pled oscillators to lock into each other, i.e. , move with the
same (phase) velocity; (2) a competing random spatial
variation of the pinning forces; and (3) a viscous force,
proportional to the velocity gradient. A spatial variation

of o indicates the presence of phase slips [9].
In the update rule we first calculate the force at site

i as f; = max[C(V'zo), + E —p, + n, (t), 0], where E
is the driving field, p, is the random positive pinning
force, n, (t) (( E is the noise perturbation —which can be
zero—at iteration t, C is a numerical coeKcient, and T
is the lattice Laplacian. The velocity field is then asyn-
cronously updated by 0, ~ NINT(o, /2+ f, /2), where
the NINT (nearest integer) function mimics the locking
and the inertial term prevents blinking.

Adding noise induces hopping between the many at-
tractors or "traps" of the noiseless dynamics. In prac-
tice, no velocity changes are observed until a fluctuation
in the force occurs which is large enough to induce an
avalanche. This is a rearrangement of the o s which is
both temporally and spatially localized, and which we
treat as effectively instantaneous.

We define the "depth" of an attractor as the smallest
amplitude of bounded noise, which will eventually move
the system out of the attractor basin. Operationally, the
depth is calculated by (1) evolving for sufficiently long
time from a trap under the influence of white noise, which
is uniformly distributed in the finite interval (0, N „),
(2) removing the noise, whereby the system again relaxes
to an attractor, and (3) checking if the initial and final
configurations difFer and using the information to modify
N „by bisection.

The scale for the noise magnitude and trap depth is
fixed by the NINT function, which models the locking
between different degrees of freedom. A perturbation of
size l is considered large, as it always induces a change
in the next time step.

Additive noise of bounded magnitude eventually leads
the system into a trap it cannot escape. Let us instead
consider the more interesting case where spikes of any
size can occur, with probability decreasing with size. As
expected [2, 3], we find that the system initially explores
shallow attractors. Let us then assume that, at some early
time, it sits in a trap of depth d~ &( l. At a later time
a noise kick of intensity I2 ) d~ triggers an avalanche,
eventually leading to a new trap of depth dp. Our cen-
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independently of the noise distribution. Equation (1) is a
Poisson distribution in lnt. Hence, the quantities A~ =
ln t~ —ln t~ i, where tg is the time of the k'th event [10],
are independent stochastic variables with the common
cumulative distribution

P(A) = 1 —exp( —A) . (2)

Time correlations between events disappear when time is
measured on a logarithmic scale.

In this analogy, the number of avalanches happening
in time ln t in a system of size S should be a sum of Nd
Poisson variables, where S/Nd, is related to the charac-
teristic size of the avalanche. The sum is itself Poisson
distributed with average Ng lnt, and the corresponding
average value of 6 is 1/Nd. The number of "domains"

Nd, must scale with the system size. All these relations
are confirmed by the simulations.

Let 7 = lnt and consider a mesoscopic variable v(r)
changing due to events uncorrelated on a logarithmic
time scale. Its distribution will evolve according to a
master equation defined by some negative definite op-
erator C acting on (~, v) [rather than (t, v)] variables. If
8 has a point spectrum and AO is the smallest eigen-
value, for w of the order of 1/Ao the autocorrelation
is C„(~) exp —Ao7 = t "'. The power spectrum is

S(f) = 1/fi ~'. In the limit Ao ~ 0 one finds 1/f noise.
Under nonstationary conditions such as ours, any ini-

tial condition i has generically a component in the
eigenspace of Ao, and therefore decays asymptotically
proportionate to the autocorrelation. Hence S(f)
1'exp( —Rut)(v, (t)), where (v;(t)) is the ensemble average
of v for an initial condition sharp at i. It can be estimated
as a moving average over a sufBciently large time window
of a single trajectory.

The extent to which the strong nonstationarity of our

tral observation is that the depth of the negro attractor is
very close to the magnitude of the previous noise spike
causing the avalanche, i.e., d2 I2. Therefore, the next
avalanche can only be triggered by a spike of magnitude
I3 & I2 ~ We call this mechanism noise adaptation since
the distribution of traps available to the system adapts
to the noise. Physically, this hypothesis is a generaliza-
tion of the marginal stability hypothesis earlier advanced
[2]. The generic state of the system is marginally stable
to the variation of driving parameters as well as to the
history of external noise.

Since avalanches are confined, the memory of a noise
spike only extends to some finite region. Within each of
these, the avalanche statistics is similar to that of records
among the noise spikes, where a record is a spike larger
than all the previous ones. As shown later, the probability
P„(t) of having n records in a fixed time span t & n is
asymptotically given by

1 (lnt)"
P„(t) =—,t » n » 1

t n —I!

P, (t) = ) = ln(t)/t .; t(m —1)

For k+ 1 events occurring at times 1 ( my

mk &= t, we similarly get
1

&a!i,m„.. . , m, , ( ) =
t(mi —1)(mg —1) . (mi, i —1)

Taking qy = mA; —1 we therefore find, by summing over
the indices,

~+1
y

Pp(t) = — )
q

t—1

) 1

qa —1=qa —~+1 QI —i

Approximating the sum with integrals, we regain Eq. (1)
in the limit t )) k )& l.

We can rephrase this in terms of single particles
trapped in local wells and kicked by noise with an un-
bounded distribution f(x) Let P(y, t) b. e the depth dis-
tribution of wells occupied at time t. A particle escapes
if a noise spike exceeds the depth of its well. It then falls
into a new well of depth equal to the size of the spike.
The master equation for P is

OP(y, t) = —P(y t)P(y)+ f(y) dx P(x, t), (7)

where E(y) = f dx f(x). Making the substitution P =
(f/I" )g(E, t), one can readily show that asymptotically
[t ~ oo, Et O(1)] the solution of Eq. (7) is that g be
a homogeneous function of Ft. Then the total event rate
1s

mechanism would appear in spatially averaged data de-
pends on the magnitude of the relative change in v per
event. In our case the change is very small, typically of
the order 10 s for several time decades of simulation.

We now show how Eq. (1) follows from the observation
that the depth of a new trap is equal to the instanta-
neous magnitude of the preceding noise spike. Consider
a discrete time sequence of events (the sizes of the noise
spikes), described by independent identically distributed
positive stochastic variables N, , i = 1, . . . , t. A record E,
occurs at time i if and only if N~ & max(Ni N, i).
We want to derive the probability P„(t) that 0 ( n ( t
records will occur in a fixed time span t.

For all n ) t one simply has P„=0. The probability
of one and only one record in time t is Pi(t) = 1/t (this
is just the probability that the first out of t choices is the
largest). By the same token, the probability of a record
at time m is p~ = 1/m. The first record always happens
at time 1. The probability of exactly two records in time
span t, conditional to the second one occurring at m, is

(,) Ha=2(1 —1/k) 1
(3)m —1 t(m —1)

Summing the above over all possible m values, we obtain
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TABLE I. The sample average and standard deviation for
the attractor depth as a function of the noise amplitude, with
E = 6. The statistics are based on 50 runs with different
random initial conditions and noise histories. 1.0

0.0 0.2 0.4 0.6

Probability

0.8 1.0

Amplitude

0.006
0.01
0.05
0.10
0.15
0.20
0.30
0.40
0.50

E(Depth)

0.0065
0.0098
0.049
0.098
0.146
0.186
0.284
0.372
0.469

cr(Depth)

8.19 x 10
3.53 x10 4

3.19 x 10
5.20 x 10
3.19 x 10
5.73 x 10
1.15 x 10 2

2.15 x 10
1 91 x 10

06

Xe 04

0.0

140

dn

dt
dxP(x, t)F(x) = — dF g(F, t) 1/t .

The average number of events then grows as ln(t).
We present results for C = 0.4 and for pinning forces

which are zero on a random sublattice comprising half of
the sites and otherwise drawn from an exponential dis-
tribution with average 7. The field values explored range
from E = 2 to E = 100, with most simulations done for
E = 6 and 10. We utilized different types of unbounded
white noise. For convenience we mainly used an exponen-
tial amplitude distribution, randomly changing the sign
of the deviate (with equiprobable signs). We also varied
the spatial noise correlations, considering (a) same noise
on each site, (b) uncorrelated magnitude but equal sign,
and (c) both magnitude and sign uncorrelated. Also,
we used Gaussian spatially and temporally uncorrelated
noise, generated by the Box-Muller algorithm [ll]. In all
cases the "amplitude" of the noise is half the standard
deviation. No important differences arise from varying
noise parameters.

The model was simulated on a 16 x 2'0 processor Mas-
Par parallel computer, with a total numerical effort of
the order of 10 h.

Starting the noiseless dynamics from different random
initial configurations, we observed that for a wide range
of F values (6—20) each attempt would lead to a different
trap, implying the existence of a large number of attrac-
tors.

Table I shows that the depth of a trap is almost iden-
tical to the amplitude of the noise which put the system
into it. To verify Eqs. (1) and (2) we performed, for
several sets of model parameter values, 50 different sim-
ulations. Each had a different external noise history, ran
over either 10 or 2 x 10 time steps, and comprised about
100 events. For each parameter set, the empirical quan-
tiles of the interevent intervals AI, scaled by their means
are compared with the predicted exponential distribution
with average l. As shown by Fig. 1(a), the agreement is
good. Figure 1(b) shows, for a single parameter set, the
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FIG. 1. (a) The empirical quantiles q of exponentially dis-
tributed "waiting times" Ag ——ln tI, —ln tg q with average a
obey q aln(1 —P), for 0 & P & 1. To check this rela-
tion we use 8 different sets of As, each of approximately 2500
points, and each corresponding to a different parameter set,
For each set, we extract 100 equally spaced empirical quan-
tiles, and estimate a by the arithmetic mean of the As. In (a)
exp —q/a vs P is plotted as a dot, while the line describes the
exponential distribution. (b) (a) implies that the number of
events happening in (0, t) is Poisson distributed with average
Ng ln t, where Ng is the number of domains in the sample. To
demonstrate that Np scales with the system area, we plot the
estimated averages vs lnt for sizes 1: 125 x 125, 2: 89 x 89,
and 3: 63 x 63. The slopes of the corresponding linear fits
rounded to the nearest integer are 16, 7, and 4, which is al-
most correct. Since Nq = 1/a, with a defined above, it can
also be estimated from the distribution of the As. This yields
13, 7, and 4, respectively. The disagreement might be due to
an undercounting of spatially separated but temporally over-

lapping cascades. The averages were estimated as means over
50 data sets, with different noise histories. The driving field
is E = 10; the noise magnitude is exponentially distributed
with standard deviation = 0.005. The vertical distance be-
tween the ulled symbols on each side of the averages is twice
the standard deviation of the distribution, i.e. , approximately
v 50 times larger than the statistical error on the central point.

average number of events in the intervals (0, t, ) for a se-
lected number of t, 's. Since the number of domains Ng is
the slope of the curves, it is apparent that Ng scales with
the system size. Finally, we show in Fig. 2 log~e S(f) vs
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difference shows up clearly in the data: while the hier-
archical diffusion exponents are temperature dependent,
our exponents are independent of all noise parameters.

Finally, in contrast to the model of self-organized criti-
cality (SOC) [15],our avalanches are temporally and spa-
tially con6ned. Our picture is much closer to models of
CDW below threshold (i.e. , away from the critical point),
having very many pinned states, related to each other by
local rearrangements [6, 16]. The noise-induced logarith-
mic relaxation of the angle of repose of a sandpile [17]
may provide one physical realization of our model.

We thank Sue Coppersmith, Clive Loader, and Zrevor
Hastie for useful conversations, and the NATO Scien-
tific Affairs Division for partial support (Grant No. CRG-
901035).
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FIG. 2. The figure shows logic S(f) vs log, o f As dis-.
cussed in the text, under nonstationary conditions S(f) is
approximately the Fourier transform of the spatially averaged
velocity v(f), again averaged over (5) different noise histories.
The parameters are, from top to bottom, E = 6 and noise
amplitude = 0.005; E = 6 and noise amplitude = 0.001; and
E = 10 and noise amplitude = 0.003, The spacing between
the plots is artificially enhanced by parallel shifts, The slopes
of the lines are 0.86, 0.84, and 0.70, respectively. The initial
condition is a trap generated from a random configuration
by a noiseless dynamics, with the same field as subsequently
used in the noisy evolution. All Fourier transforms use 10
time steps,

logic f for three different parameter sets, each obtained
by averaging over 5 different traces of 10 time steps. The
spectra have I/f character through 5 decades, with an
exponent weakly depending on the parameters, as previ-
ously discussed.

Slowly decaying correlations can arise in different ways,
e.g. , (i) by a disorder average of the correlation of ther-
mally relaxing two-level systems [1, 12], (ii) in hierarchi-
cal models of thermal relaxation [13], and (iii) in open
driven dissipative systems, as our case, which models a
CDW system. Both (ii) and (iii) feature multiple attrac-
tors; however, in case (ii) a large energy change requires
a large configuration change, while in (iii) attractors of
all sizes are available within few dynamical steps. This is
more similar to biological evolution as modeled by walks
on a rugged high-dimensional fitness landscape [14]. The
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