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The self-energy and Gibbs free energy of rigid vortex lines are calculated for a uniaxially anisotropic
London superconductor with a magnetic field applied at an angle ¢ from the ¢ axis. When the correct el-
liptical core cutoff is used, the Gibbs free energy may have degenerate double minima as a function of
vortex orientation. This indicates the coexistence of flux lines with different orientations at fields just
above H.,, applied at an angle ¢0 from the ¢ axis. The regime of parameters H, ¢, M./M, and x where

this occurs is mapped out.

PACS numbers: 74.60.Ec, 74.60.Ge

Bitter pattern decoration studies of magnetic flux lines
emerging from surfaces of extreme type-II superconduc-
tors have recently been carried out intensively. Particu-
larly fascinating are experiments on the high-T, super-
conductor Bij2Sr,CaggCus0g [1]1 where chains of flux
lines embedded in an approximately regular hexagonal
Abrikosov vortex lattice were seen when the external
magnetic field was tilted with respect to the ¢ axis.
Theoretical scenarios for how such a situation could
occur were recently proposed [2,3]: A possible explana-
tion is coexistence of two types of flux lines in the aniso-
tropic superconductor, one type oriented almost parallel
to the ¢ axis and another type oriented almost parallel to
the ab planes.

In this paper we demonstrate that such a situation can
indeed occur even within the relatively simple framework
of anisotropic London theory [4]. We map out the pa-
rameter regime of magnitude and direction of applied
field (H,p), effective-mass anisotropy M,/M, and
Ginzburg-Landau parameter k, where such an effect can
occur by considering the Gibbs free energy of nonin-
teracting flux lines, i.e., applied fields just above H., and
thus very small inductions. Minima in the Gibbs energy
as a function of vortex orientation may occur at two
different orientations of the flux lines in the superconduc-
tor, for large enough anisotropy. Provided that these
minima can be brought to be degenerate, flux lines may
start penetrating the superconductor at H.(¢) with two
different orientations 0, facilitating the coexistence of
multiple “species” of vortices. These observations do not
by themselves suffice to explain the experimental results
of Bolle et al. [1] because the arrangement of these coex-
isting vortices will depend on their mutual interactions
which we do not treat here. Nevertheless, this effect is
quite interesting in its own right. For obtaining the
desired parameter range it is essential to consider the
correct elliptical shape of the vortex core cutoff in Lon-
don theory [5,6]. We show that an incorrect circular
cutoff gives a Gibbs free energy with only one minimum
and hence only one permitted orientation of the flux lines
for applied fields just above H.;.. The core cutoff also has
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consequences for the self-energy and line tension of a
straight vortex line, and we begin by considering the
former in some detail, as the self-energy will also be
needed for the computation of the Gibbs free energy.

The general expression for the self-energy per unit
length J(0) of a rigid vortex line running at an arbitrary
angle @ from the ¢ axis in a uniaxially anisotropic London
superconductor is given by [6]
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Aap and A, are the magnetic penetration lengths for
currents along the ab plane and ¢ axis, respectively, and
A3 =12 sin20+12cos26. The momenta k, and the x and
y axes are oriented orthogonal to the vortex line. Within
anisotropic London theory we have A /Ag =~/M,/M
= =¢,/E. where £4 and &, are the superconducting
coherence lengths in the ab plane and along the ¢ direc-
tion, respectively. In general, the line tension of an isolat-
ed vortex line is related to the self-energy via the relation

[6]
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where the last term comes from the fact that in anisotrop-
ic superconductors, the self-energy of the vortex line de-
pends explicitly on 8. Thus, contrary to the case of iso-
tropic superconductors, the line tension, and hence the tilt
modulus, is not simply proportional to the self-energy.

If an incorrect circular cutoff (circularly symmetric
about the vortex axis) is used, one obtains from Eq. (1)
the result

J(0) =J(0)Ae/A. , 3)

where J(0) =d¢Ink/4nuor. Using Eq. (3) for the self-
energy, one finds the following simple relation for the line
tension of a rigid vortex line at arbitrary angle 6:
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Thus, the sense of the angular dependence of J(8) and
P(0) is opposite in this approximation, a result which
also holds if the correct elliptical cutoff is used. In partic-
ular, the result Eq. (4) would imply that the tilt modulus
of the single vortex vanishes as 1/I'2 when I'— o at
0=0, whereas P(0=nr/2) =TJ(0) diverges; i.e., the out-
of-plane tilt modulus within the approximation (3) be-
comes infinite when I'— oco. Although the assumption of
rigid vortex lines in this limit very likely is unphysical, it
is tempting to associate this large tilt modulus with a
remnant of the “lock in” transition known from the
Lawrence-Doniach theory and discussed by Feinberg [7].

In Eq. (1) the contributions from the large k region
dominate the integral. We have seen that, for 6=0, an
isotropic cutoff leads to a vanishing tilt modulus of the
single flux line along ¢ in the limit A./Az — oo. There-
fore, for large I" any contribution from the correct ellipti-
cal cutoff is essential and renders the line tension finite
even in the case of stacked pancake vortices without
Josephson coupling [5,7,8]. As suggested in [4] the in-
tegration over kj,kx should be cut off on an ellipse with
semimajor axis Es' and semiminor axis & !, where
E3=£2,cos?0+E2sin26.  This elliptical core shape has
now been derived from anisotropic Ginzburg-Landau
theory [9] by utilizing the Klemm-Clem transformations
[10]. When such an elliptical core cutoff is used, the re-
sulting self-energy per unit length is given by

7(8) =J(o)%v(o;r,x) :

()
A2+
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where the term in square brackets is due to the angular
dependence of the anisotropy of the vortex core. If one
regards Eq. (5) as the expansion of Eq. (1) in powers of
1/Ink, and give the elliptical core cutoff, the expansion
truncates exactly at linear order. Since Eq. (1) itself
presumes the validity of London theory, our results are
limited to large k=X 10, the regime of interest in, e.g.,
high-T. superconductors. The result of Eq. (5) was also
obtained in a less transparent form in [4] and should be
compared with Eq. (3). In the derivation of Eq. (5), we
have made the approximations In(1+ x2I'?) = In(x2r2),
and Inll1+x?(W2+13)/223] = In[x>(A2+13)/223]. This
is generally valid in type-II superconductors with large «.

In very hard and not too anisotropic superconductors
such that InI'/Ink <1, the logarithmic terms in square
brackets may be disregarded, and the result reduces to
the one obtained when the anisotropy of the cutoff was
neglected, Eq. (3) [11]. However, note that the 6-depen-
dent part of v(0) may show nonmonotonicity ~1/Ink as
a function of 6 for large enough I', whereas Ag/A. is
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monotonically decreasing for 0 € [0,7z/2]. If Inx is not
too large and I' is not too small, one may therefore have
nonmonotonic behavior of J(8) itself, due to the “squash-
ing” of the vortex core as the flux lines are tilted from ¢.
The effect naively expected based on Eq. (3), that flux
lines will reduce J(8) by increasing 6, may be partially
compensated by the 6-dependent logarithmic factor in
Eq. (5). This fact reflects the cost in energy of deforming
the vortex core as the flux line tilts from the ¢ axis. It is
this extra cost in energy which leads to a delicate cancel-
lation in Eq. (2) and renders the tilt modulus finite even
when I'— e [5]. The parameter regime producing non-
monotonicity in J(8) will be discussed in detail below.

The angular dependence of the anisotropic cutoff has
important consequences for the Gibbs energy, which we
now obtain for a gas of noninteracting vortices, i.e., H
just above H.j, and compare the results with those ob-
tained using an isotropic cutoff. This will yield informa-
tion about the angular dependence of the lower critical
field, and of preferred vortex orientations at low induc-
tions. In the following we choose a simple geometry
which easily admits an exact treatment of demagnetiza-
tion effects as the external field is tilted, namely, a cylin-
drical superconductor with the field applied perpendicular
to the symmetry axis of the cylinder. Under such cir-
cumstances, the Gibbs energy per unit length at 7 =0 is
given by

G(8) =nJ(8) — HBcos(6—¢)

=70 EV(G;F,K)—hCOS((D—e) , ()
Do xc
where ¢ is the angle of the applied field relative to the ¢
axis, n =B/®y, h=H/H,, and Hy=®yInx/4rur’.

The angular dependence of the Gibbs energy itself may
be qualitatively different for the cases of isotropic and an-
isotropic cutoffs. Only one minimum exists for the case
of isotropic cutoff, whereas a degenerate double minimum
may exist when an anisotropic cutoff is used, as seen in
Fig. 1. Observing such double minima requires fine tun-
ing of the parameters (h,¢,x,I"), in a manner which will
be detailed below. In particular, a threshold value of
I' X 7 appears to be necessary to see the double minimum
for k= 10 when the second term in square brackets in
Eq. (5) is included. The physical implications of this are
quite interesting: It means that at a given magnitude and
orientation of an externally applied magnetic field vor-
tices may start penetrating the superconductor at two
different angles, provided that the two minima in the
Gibbs energy are precisely degenerate at G(8) =0. At
least in the extreme low-induction regime, one may thus
have a *“two-component” vortex system characterized by
two different orientations of the flux lines from the ¢ axis.
Such a situation may form a basis for explaining the
coexistence of vortex chains and a hexagonal vortex lat-
tice [2] which was recently observed in decoration experi-
ments in tilted fields [1].
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FIG. 1. Gibbs energy G as a function of vortex orientation
with anisotropic core cutoff. The applied field H.; and the
orientation ¢ of the applied field are chosen to produce degen-
erate minima in G. Use of isotropic core cutoff gives one
minimum in G, whereas anisotropic core cutoff gives the possi-
bility of two (in general nondegenerate) minima in G. The inset
shows the minimum penetration length anisotropy I' necessary
to see double minima in G, as a function of Ink.

We shall now investigate the parameter regime
(h,¢,I',x) for which two distinct vortex orientations are
degenerate minima in the Gibbs free energy at a given
orientation of the external field (Hcx=H.;) in more de-
tail. Consider the coupled equations that must be satis-
fied at the lower critical field H,, for at least one vortex
orientation 0,

3G (6) _
10 =0. )

They lead to the following region between ¢ and 6:

G(6) =0;

S B A CAN YY)
tan(g—6) re v(GI,x) @)

or equivalently
c (1 —asin?6)?
cosf cosO+csind(1 —asin?0)
= WOIx) , )

tang =T ~"2tand —

_ V(er,x) — -2

=T oK)’ a=1—I"",
where A§=0A¢/060 and v =090v/80. In order to satisfy
both Egs. (7) the further constraint kA =iev(6;[,x)/A,
xcos(@ —¢) between 0 and ¢ must be considered. The
well-known result for isotropic cutoff [11] is obtained by
neglecting the second term on the right-hand side (RHS)
of Eq. (9); this is equivalent to setting v(6;I',x) =1 and
implies that for (¢,0) € [0,7/2] the mapping between ¢
and @ is one-to-one, since the first term on the RHS of
Eq. (9) is a monotonic function of 6. This explains why
only one solution 8(¢) is found in this case, from which
one would conclude that vortices of a unique orientation
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FIG. 2. The hatched regions show the ranges of ¢ where it is
possible to see two (not necessarily degenerate) local minima in
G(8) as a function of T, for k=10 and 50. The dotted lines in
each hatched region indicate the values ¢ =¢* (x,I') where the
two minima in the Gibbs free energy are precisely degenerate at
G(0) =0 in the Gibbs energy.

penetrate the superconductor for Hex = H.;. For aniso-
tropic cutoff this is not necessarily true since the second
term on the RHS o 1/lnk can be nonmonotonic, and
multiple solutions 6 for a given ¢ may thus be found.

Equation (9) is convenient as a starting point in
searching for the region in parameter space (¢,T,«)
where more than one vortex orientation can occur at a
given orientation ¢ of the external magnetic field. A
minimum requirement to see this ar given ¢ is that the
RHS of Eq. (9) must be nonmonotonic as a function
of 0; i.e., OW(6;I',x)/30 must change sign. Hence,
ming(dW/060) =0 determines the critical value of T at
given k that is required for multiple solutions of Eq. (9)
to occur. This minimum value of I'=I;, is shown in the
inset of Fig. 1 as a function of Ink, and is seen to in-
creases slowly with k. Because of assumptions in London
theory we have restricted our search to x=10. For
I' > min, there are two values of 6 that satisfy
dW/30=0, corresponding to two values of the angle ¢:
tan(¢;) =exp[W(6;;I",x)]. These two values of ¢ repre-
sent the smallest (largest 8) and largest (smallest 6) an-
gles of the applied field where there is more than one lo-
cal minimum of the Gibbs free energy satisfying Eq. (9).
The situation is illustrated in Fig. 2, where the hatched
regions show the relevant ranges of ¢ as a function of I
for k=10 and 50. It is seen that in general two local
minima in the Gibbs energy may occur only in a fairly
narrow range of small ¢ values. The range of ¢ decreases
with increasing x and increases with increasing I. The
values of ¢ where this occurs decrease with increasing «
and I'.

At this stage, we have determined a range of parame-
ters (¢,I",x) which will produce two local minima in G(8)
and hence may give rise to two coexisting vortex orienta-
tions in the superconductor. In general, however, these
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FIG. 3. Normalized field » =h* (x,[') which gives two de-
generate minima G(8) =0 in the Gibbs energy, as a function of
I', for two values k=10 and 50. The angle ¢ is chosen at each
T,k to be located on the dotted lines of Fig. 2; each h*(x,I')
terminates at the I'min(x) shown in Fig. 1. The inset shows the
two possible vortex orientations (6,,0;) vs T for h=h*, ¢ =¢*,
and k=10 and 50, i.e., for parameters such that G(8) exhibits
two degenerate minima G(8) =0. Note that 6,78, is only pos-
sible above a critical value of I'. Note also that both 6, and 6,
exceed ¢*.

minima are nondegenerate; multiple solutions to Eq. (9)
with the constraint h=h* =igv(0;I",x)/A.cos(0—¢)
guarantee one, but not two values of 6 such that
G(0) =0. Two nondegenerate minima in G(8) mean, as
in the case of a single minimum, that only one vortex
orientation is possible in the superconductor at applied
fields just above H.;. We next determine the parameters
h*(k,I'),0* (x,I') that will give a minimum G (8) =0 for
two different vortex orientations 0. This requires further
adjustments of ¢ within the hatched regions shown in Fig.
2 and hence further adjustment of A* according to the
above constraint. Adjusting ¢ to the value ¢* satisfying
the relation

7»9]V(9](¢*);I‘,K‘) _ 7\.92V(92(¢*);F,K)
rccosl0,(p*) —9*]  A.cosl8,(p*) —9*]

gives two values of 0,60, where G(8)=0; 8G/96=0;
two examples are shown in Fig. 1. Specific values of
¢*(x,I') which give two degenerate absolute minima
G (8)) =G(6,) =0 are given by the dotted lines in Fig. 2
for k=10 and 50. Figure 3 shows the corresponding nor-
malized lower critical field A* that allows two different
vortex orientations to occur simultaneously. The inset
shows the corresponding two possible vortex orientations
(61,62) as a function of ', for h=h* ¢=¢*, and two
values k=10 and 50. Note that 6, and 6, meet at
Tmin(x). By comparing 6*(I'), given by the dotted lines
in Fig. 2, with the inset of Fig. 3 we conclude that in the
case of coexistence neither of the vortex orientations is
parallel to the applied field. Both “species” are tilted fur-
ther away from the ¢ axis than the applied field, i.e.,
(61,6,) > o*.

10)
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In summary: (i) Anisotropic London theory with an-
isotropic core cutoff yields the possibility of coexistence
of flux lines at different € in uniaxial anisotropic super-
conductors. This is due to an energy cost associated with
the 6-dependent shape of vortex cores affecting the self-
energy when it is calculated beyond “logarithmic” accu-
racy. It partially compensates the effect that flux lines
lower their self-energy per unit length by orienting them-
selves along the ab planes at an inclination 6>>¢ when
I'>1. (i) The parameter regime (h,¢,I',x) where the
effect is seen has been mapped out in a cylindrical super-
conductor geometry which permits an exact treatment of
demagnetization effects, and is found to occur in very an-
isotropic and not too hard type-II superconductors. (iii)
The investigation is carried out at Hex =H.; and shows
that no lower threshold value of the induction is needed
to see coexistence. This implies that the vortex-vortex in-
teraction in anisotropic superconductors is not essential in
producing the coexistence. (It will, however, be responsi-
ble for destroying coexistence at large enough induc-
tions.) (iv) When the angle ¢=(0,7/2), no equilibrium
vortex orientation is ever parallel to the externally applied
field.

A.S. acknowledges support from the ONR, Grant No.
N 00014-92-J-1101.

Note added.—In a different context, an interesting
cutoff-independent tilt instability of flux lines for vortex
orientations within a range of special tilting angles from
the ¢ axis has recently been reported by Sardella and
Moore [12]. The values of these special tilting angles are
also determined by I" and «.
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