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Multiple Coexisting Orientations of Flux Lines in Superconductors with Uniaxial Anisotropy
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The self-energy and Gibbs free energy of rigid vortex lines are calculated for a uniaxially anisotropic
London superconductor with a magnetic field applied at an angle p from the 2 axis. %'hen the correct el-
liptical core cutoA is used, the Gibbs free energy may have degenerate double minima as a function of
vortex orientation. This indicates the coexistence of Aux lines with diAerent orientations at fields just
above H, h applied at an angle &AO from the c axis. The regime of parameters H, p, M, /M, and tr where
this occurs is mapped out.

PACS numbers: 74.60.Ec, 74.6G.Ge

Bitter pattern decoration studies of magnetic Ilux lines

emerging from surfaces of extreme type-II superconduc-
tors have recently been carried out intensively. Particu-
larly fascinating are experiments on the high-T, super-
conductor Bi22Sr2CaosCu20s [1] where chains of flux

lines embedded in an approximately regular hexagonal
Abrikosov vortex lattice were seen when the external
magnetic field was tilted with respect to the c axis.
Theoretical scenarios for how such a situation could
occur were recently proposed [2,3]: A possible explana-
tion is coexistence of two types of flux lines in the aniso-

tropic superconductor, one type oriented almost parallel
to the c axis and another type oriented almost parallel to
the ab planes.

In this paper we demonstrate that such a situation can
indeed occur even within the relatively simple framework
of anisotropic London theory [4]. We map out the pa-
rameter regime of magnitude and direction of applied
field (H, p), effective-mass anisotropy M, /M, and

Ginzburg-Landau parameter tc, where such an effect can
occur by considering the Gibbs free energy of nonin-

teracting Ilux lines, i.e., applied fields just above H, ~
and

thus very small inductions. Minima in the Gibbs energy
as a function of vortex orientation may occur at t~o
different orientations of the Aux lines in the superconduc-
tor, for large enough anisotropy. Provided that these
minima can be brought to be degenerate, flux lines may
start penetrating the superconductor at H, ~ (p) with two
different orientations 0, facilitating the coexistence of
multiple "species" of vortices. These observations do not

by themselves su%ce to explain the experimental results
of Bolle et al. [1] because the arrangement of these coex-
isting vortices will depend on their mutual interactions
which we do not treat here. Nevertheless, this effect is

quite interesting in its own right. For obtaining the
desired parameter range it is essential to consider the
correct elliptical shape of the vortex core cutoff in Lon-
don theory [5,6]. We show that an incorrect circular
cutoff gives a Gibbs free energy with only one minimum

and hence only one permitted orientation of the flux lines

for applied fields just above 0,&. The core cutoff also has

consequences for the self-energy and line tension of a
straight vortex line, and we begin by considering the
former in some detail, as the self-energy will also be
needed for the computation of the Gibbs free energy.

The general expression for the self-energy per unit
length J(8) of a rigid vortex line running at an arbitrary
angle 0 from the c axis in a uniaxially anisotropic London
superconductor is given by [61

J(8) = V„(k ) .
2po " 4x

Here,

V„(k~) =(I+Xgk )~/[(I+A, ,bk )~(I+Xgk„+X,k )y],

k,b and k, are the magnetic penetration lengths for
currents along the ab plane and c axis, respectively, and
A, g =k~b sin 0+k~ cos 0. The momenta k ~ and the ~ and

y axes are oriented orthogonal to the vortex line. Within

anisotropic London theory we have A,,/X, b
=JM, /M

—= I =g,b/g, where (,b and g, are the superconducting
coherence lengths in the ab plane and along the c direc-
tion, respectively. In general, the line tension of an isolat-
ed vortex line is related to the self-energy via the relation
[6]

J 8P(8) =J(8)+ (2)

where the last term comes from the fact that in anisotrop-
ic superconductors, the self-energy of the vortex line de-
pends explicitly on 8. Thus, contrary to the case of iso-
tropic superconductors, the line tension, and hence the tilt
modulus, is not simply proportional to the self-energy.

If an incorrect circular cutoff (circularly symmetric
about the vortex axis) is used, one obtains from Eq. (1)
the result

J(8) =J(O)X./X, ,

where J(0) =@olntc/4trpok, b Using Eq.. (3) for the self-

energy, one finds the following simple relation for the line
tension of a rigid vortex line at arbitrary angle 0:

0031-9007/93/71(9)/1451(4) $06.00
1993 The American Physical Society

1451



VOLUME 71, NUMBER 9 P H YSI CA L R EV I EW LETTERS 30 AUGUST 1993

(8) J(0) ~e

Xg

J(e)
kg

(4)

Thus, the sense of the angular dependence of J(e) and
P(e) is opposite in this approximation, a result which
also holds if the correct elliptical cutoA is used. In partic-
ular, the result Eq. (4) would imply that the tilt modulus
of the single vortex vanishes as 1/I when I ~ at
8=0, whereas P(8=x/2) =I J(0) diverges; i.e., the out-
of-plane tilt modulus within the approximation (3) be-
comes infinite when I ~. Although the assumption of
rigid vortex lines in this limit very likely is unphysical, it
is tempting to associate this large tilt modulus with a
remnant of the "lock in" transition known from the
Lawrence-Doniach theory and discussed by Feinberg [7].

In Eq. (1) the contributions from the large k region
dominate the integral. We have seen that, for 0=0, an
isotropic cutoA' leads to a vanishing tilt modulus of the
single flux line along c in the limit X,/X, b ~. There-
fore, for large I any contribution from the correct ellipti-
cal cutoA' is essential and renders the line tension finite
even in the case of stacked pancake vortices without
Josephson coupling [5,7,8]. As suggested in [4] the in-
tegration over k~, k„should be cut off on an ellipse with
semimajor axis g,b and semiminor axis gg ', where

gq =g,bcos 8+(, sin e. This elliptical core shape has
now been derived from anisotropic Ginzburg-Landau
theory [9] by utilizing the Klemm-Clem transformations
[10]. When such an elliptical core cutoA' is used, the re-
sulting self-energy per unit length is given by

monotonically decreasing for OC [O, x/2]. If lnrc is not
too large and I is not too small, one may therefore have
nonmonotonic behavior of J(e) itself, due to the "squash-
ing" of the vortex core as the flux lines are tilted from c.
The eA'ect naively expected based on Eq. (3), that flux
lines will reduce J(e) by increasing 8, may be partially
compensated by the 0-dependent logarithmic factor in

Eq. (5). This fact reflects the cost in energy of deforming
the vortex core as the flux line tilts from the c axis. It is
this extra cost in energy which leads to a delicate cancel-
lation in Eq. (2) and renders the tilt modulus finite even
when I ~ [5]. The parameter regime producing non-
monotonicity in J(e) will be discussed in detail below.

The angular dependence of the anisotropic cutoff' has
important consequences for the Gibbs energy, which we
now obtain for a gas of noninteracting vortices, i.e., H
just above H, t, and compare the results with those ob-
tained using an isotropic cutoA. This will yield informa-
tion about the angular dependence of the lower critical
field, and of preferred vortex orientations at low induc-
tions. In the following we choose a simple geometry
which easily admits an exact treatment of demagnetiza-
tion effects as the external field is tilted, namely, a cylin-
drical superconductor with the field applied perpendicular
to the symmetry axis of the cylinder. Under such cir-
cumstances, the Gibbs energy per unit length at T=O is
given by

G(e) =nJ(e) —HBcos(e —y)

=J(0) v(e;I, x ) —h cos (P —8)
Xg

@0

(5)
1 ~'cos'O

' ~'+~' '

v(e) =1+ lnI + ln
lnK g cos g+g

where the term in square brackets is due to the angular
dependence of the anisotropy of the vortex core. If one
regards Eq. (5) as the expansion of Eq. (1) in powers of
I/Inx. , and give the elliptical core cutoff, the expansion
truncates exactly at linear order. Since Eq. (1) itself
presumes the validity of London theory, our results are
limited to large K 10, the regime of interest in, e.g. ,
high-T, superconductors. The result of Eq. (5) was also
obtained in a less transparent form in [4] and should be
compared with Eq. (3). In the derivation of Eq. (5), we
have made the approximations ln(1+K I ) =in(x I ),
and In[1 + Ir (X2+ke)/2A@] = In[x (X, +Xq)/2ke]. This
is generally valid in type-II superconductors with large ~.

In very hard and not too anisotropic superconductors
such that lnI /Inic«1, the logarithmic terms in square
brackets may be disregarded, and the result reduces to
the one obtained when the anisotropy of the cutoA' was
neglected, Eq. (3) [11]. However, note that the 8-depen-
dent part of v(e) may show nonmonotonicity —I/Inic as
a function of 8 for large enough I, whereas kg/k, is

where p is the angle of the applied field relative to the c
axis, n =8/@p, h =H/H p, and Hp =@plnir/4zpk, ,b.

The angular dependence of the Gibbs energy itself may
be qualitatively diAerent for the cases of isotropic and an-
isotropic cutoAs. Only one minimum exists for the case
of isotropic cutoff, whereas a degenerate double minimum

may exist when an anisotropic cutoA is used, as seen in

Fig. 1. Observing such double minima requires fine tun-
ing of the parameters (h, g, lr, I ), in a manner which will

be detailed below. In particular, a threshold value of
I ~ 7 appears to be necessary to see the double minimum
for x ~ 10 when the second term in square brackets in

Eq. (5) is included. The physical implications of this are
quite interesting: It means that at a given magnitude and
orientation of an externally applied magnetic field vor-
tices may start penetrating the superconductor at t~o
diAerent angles, provided that the two minima in the
Gibbs energy are precisely degenerate at G(e) =0. At
least in the extreme low-induction regime, one may thus
have a "two-component" vortex system characterized by
two diAerent orientations of the flux lines from the c axis.
Such a situation may form a basis for explaining the
coexistence of vortex chains and a hexagonal vortex lat-
tice [2] which was recently observed in decoration experi-
ments in tilted fields [1].
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FIG. 3. Normalized field h =h*(x', I ) which gives two de-
generate minima G(8) 0 in the Gibbs energy, as a function of
I, for two values x 10 and 50. The angle p is chosen at each
I, x to be located on the dotted lines of Fig. 2; each h*(x, l )
terminates at the I;„(x)shown in Fig. 1. The inset shows the
two possible vortex orientations (8~, 82) vs I for h =h*, P=P*,
and x =10 and 50, i.e., for parameters such that G(8) exhibits
two degenerate minima G(8) =0. Note that 8~%82 is only pos-
sible above a critical value of 1. Note also that both 0~ and 02
exceed p*.

minima are nondegenerate; multiple solutions to Eq. (9)
with the constraint h =h * =A, ev(8;I, x )/k, cos(8 —P)
guarantee one, but not t~o values of 0 such that
G(8) =0. Two nondegenerate minima in G(8) mean, as
in the case of a single minimum, that only one vortex
orientation is possible in the superconductor at applied
fields just above H, i. We next determine the parameters
h*(x, I ),p*(x., I ) that will give a minimum G(8) =0 for
two diferent vortex orientations 8. This requires further
adjustments of p within the hatched regions shown in Fig.
2 and hence further adjustment of h* according to the
above constraint. Adjusting p to the value p* satisfying
the relation

ke, v(8, (y*);I,x.)
X, cos[8/ (Ip*) —lp*]

7 g, v(82(y*);I, rc)

X, cos [8z(p* ) —y*)
(lo)
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gives two values of 8~e82 where G(8) =0; tiG/t18=0;
two examples are shown in Fig. 1. Specific values of
p*(x,I ) which give two degenerate absolute minima
G(8~) =G(8z) =0 are given by the dotted lines in Fig. 2
for x =10 and 50. Figure 3 shows the corresponding nor-
malized lower critical field h* that allows two diff'erent
vortex orientations to occur simultaneously. The inset
shows the corresponding two possible vortex orientations
(8~, 8z) as a function of I, for h =h*,p=p*, and two
values x =10 and 50. Note that Oi and 02 meet at
I;„(x). By comparing 8*(I ), given by the dotted lines
in Fig. 2, with the inset of Fig. 3 we conclude that in the
case of coexistence neither of the vortex orientations is
parallel to the applied field. Both "species" are tilted fur-
ther away from the e axis than the applied field, i.e.,
(8&,8z) & y*.

In summary: (i) Anisotropic London theory with an
isorropic core euro+ yields the possibility of coexistence
of Aux lines at diAerent 0 in uniaxial anisotropic super-
conductors. This is due to an energy cost associated with
the 0-dependent shape of vortex cores aAecting the self-
energy when it is calculated beyond "logarithmic" accu-
racy. It partially compensates the eAect that Aux lines
lower their self-energy per unit length by orienting them-
selves along the ab planes at an inclination 8))p when
I » I. (ii) The parameter regime (h, p, I, K) where the
eAect is seen has been mapped out in a cylindrical super-
conductor geometry which permits an exact treatment of
demagnetization eA'ects, and is found to occur in very an-
isotropic and not too hard type-II superconductors. (iii)
The investigation is carried out at H„t =H,

~ and shows
that no lower threshold value of the induction is needed
to see coexistence. This implies that the vortex-vortex in-

teraction in anisotropic superconductors is not essential in

producing the coexistence. (It will, however, be responsi-
ble for destroying coexistence at large enough induc-
tions. ) (iv) When the angle p~(0, n/2), no equilibrium
vortex orientation is ever parallel to the externally applied
field.

A.S. acknowledges support from the ONR, Grant No.
N 00014-92-J-1101.

Note added. —In a diAerent context, an interesting
cutoff-independent tilt instability of Aux lines for vortex
orientations within a range of special tilting angles from
the c axis has recently been reported by Sardella and
Moore [12]. The values of these special tilting angles are
also determined by I and x.
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