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Magnetophonon Shakeup in a Wigner Crystal: Applications to
Tunneling Spectroscopy in the Quantum Hall Regime
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We calculate the tunnel current between two parallel two-dimensional electron systems in a
strong perpendicular magnetic field. We model the strongly correlated electron systems by Wigner
crystals, and describe their low-energy dynamics in terms of magnetophonons. A tunneling electron
shakes up magnetophonons, which results in a conductance peak that is displaced away from zero
voltage and broadened compared with the case of no magnetic Beld. Our results are in very good
quantitative agreement with recent experiments.

PACS numbers: 73.40.Gk, 73.20.Dx

The Coulomb blockade effect has received a great deal
of attention over the past few years. In this effect the
transport through a small metallic grain or quantum dot
is suppressed at small bias voltages [1]. The charging
energy due to one single electron, e~/2C, becomes large
compared with other relevant energies such as k~T once
the grain or dot, and consequently the capacitance C,
becomes small enough.

In this paper we consider a Coulomb blockade effect
of a somewhat different origin. In a recent experiment
Eisenstein, Pfeiffer, and West [2] studied the tunneling
between two parallel two-dimensional (2D) electron sys-
tems confined in quantum wells (QW's) separated by
a rather thick barrier. The 2D electron systems were
furthermore subject to a strong perpendicular magnetic
field so that only the lowest Landau level was (partially)
filled. They found that (i) the small-bias conductance
was strongly suppressed at low temperatures, (ii) the tun-
nel current showed a broad maximum at voltage V~, k

6—7 mV, and (iii) as a function of temperature, the small-
bias conductance was activated with activation temper-
ature Tz"~ =5—10 K [3]. This suggests that there is an
energy cost eV~, t, of the order of e2/4vrr(a), for moving
an electron from one electron system to the other in a
strong magnetic field. Here c is the dielectric constant of
the material and (a) is the average interelectron spacing.
At zero magnetic field the same system shows, in con-
trast, a conductance that is sharply peaked at zero bias,
which indicates that the energy cost vanishes for B =0.
Thus, the strong magnetic field causes a Coulomb block-
ade. In contrast to experiments with small metal grains
or quantum. dots, the "smallness" is in this case set, not
by geometric dimensions, but by the magnetic field. It
quenches the kinetic energy so that the 2D electron sys-
tems are strongly correlated.

In the following, we present a model calculation of the
tunnel current in the system studied in the experiment
[2]. Our model, which contains no adjustabLe param
eters, is the simplest one that we believe can capture
most of the essential physics. The two-dimensional elec-
tron systems are likely to be in compressible liquid states.

Since the kinetic energy of the electrons is quenched the
Coulomb interaction causes strong correlations between
them. An electron tunneling from one such liquid to
the other induces sudden changes in the potential felt by
the other electrons. This consequently shakes up a num-
ber of collective excitations in the electron liquids. The
displacement of the maximum current away from zero
bias reflects the energy carried away by these excitations.
The major rationalization in the design of our model is
that we approximate the strongly correlated electron liq-
uids by Wigner crystals (WC's), which is a reasonable
model for the short-range correlations, but overestimates
the long-range structural order in an electron liquid. A
Wigner crystal has a gapless mode of low-energy excita-
tions, magnetophonons, that are mainly transverse [4,5],
whereas the mostly longitudinal magnetoplasmons only
appear above the cyclotron energy. We find that the con-
ductance peak is broadened and displaced away from zero
bias due to shakeup of magnetophonons. Our results are
in very good agreement with the experiment. We find a
conductance gap and a maximum in the tunnel current
at about the same voltage as in the experiment. Also our
results in the case of a finite temperature are in general
agreement with experiment.

Except for this work a few other theories have ad-
dressed the same problem. Efros and Pikus [6] stud-
ied an essentially classical model of a two-dimensional
electron liquid using Monte Carlo methods. He, Platz-
man, and Halperin [7] calculated the one-electron spec-
tral function in a finite system by means of exact diag-
onalization. Moreover, they presented analytical results
for the low-voltage behavior of the current. Our theory
is complementary to theirs. The use of a Wigner crys-
tal means that we may not be able to describe certain
quantum-mechanical effects and long-range correlations.
On the other hand, our model is conceptually and calcu-
lationally simple. Furthermore, we get results also in the
thermodynamic limit.

We assume that the 2D electron systems are ordered
as triangular Wigner crystals; the lattice parameter ao
is set by the electron density (see Fig. 1). Since the dis-
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tance separating the two electron systems is rather large
compared with the interelectron spacing in each of the
QW's in the experiment, we neglect interactions as well

as mutual correlations between the WC's. We consider
a process in which an electron tunnels from a lattice po-
sition in one Wigner crystal into an interstitial position
of the other. It does not cost any extra kinetic energy to
localize an electron to an area 2vrl2 in a magnetic field

[l, = (h/eB) ~2 is the magnetic length]. Therefore, lo-
calized wave packets (guiding center states) form a good
basis set for the single-particle states. Thus, the imme-
diate efFect of a tunneling event on the electron systems
can be described as a local perturbation, not only in the
Wigner crystals, but also in the real liquid systems. We
describe the low-energy dynamics of all the other elec-
trons in terms of magnetophonons and obtain the model
Hamiltonian

H= Ho+ HT + HT

cL, + ) (M L,a + M*I ai) czicl.
CX

+ sR+) (M R& +M ~ ) RcR+) ~n& &n++LRc~cL+TqRclc~
A

Here cl,(~l and cz(+ are destruction and creation oper-
ators for an electron in the lowest Landau level in the
left (right) QW. Considering tunneling from left to right,
cL, is the energy of an electron in a lattice position and
z~ is the energy of an interstitial electron. The oper-
ators a (ai) destroy (create) a magnetophonon (MP)
in mode 0, ; o. is a composite index denoting in which
QW the magnetophonon is, as well as its wave vector.
We have calculated the MP frequencies ~ following the
method of Bonsall and Maradudin [4]. This means that
we treat the electrons as classical point particles. Such
an approximation, of course, works best for small filling
factors. It deserves to be pointed out that, even at the
highest filling factors (v =0.8) considered in this paper,
the quantum-mechanical overlap between an interstitial
electron and each of the nearest lattice electrons is only
=3%. A natural improvement of the calculation of the
magnetophonon frequencies would be to use the theory
of Cote and MacDonald [5]. Their calculation can also
give us some idea about how well the MP's approximate
the collective modes of the real system. In the theory
of Ref. [5] the electrons could move itinerantly so the
calculated modes should in a sense be "liquidlike. " Still
the dispersion relation of the MP's was qualitatively the
same as in the harmonic approximation [4], and even the
quantitative differences were not very large for filling fac-
tors v (0.5. We conclude that it is reasonable to assume
that the MP's approximate the collective modes of the
real system fairly well as long as the wavelength does not
exceed a few lattice spacings.

To quantize the MP's one must perform a canoni-
cal transformation [8]. This leaves the frequencies un-
changed compared with the classical calculation but the
eigenmodes a become linear combinations of classical
magnetophonon plane waves with wave vectors q and
—q. The matrix element M L, (R) gives the interaction
between magnetophonon a and an electron in the left
(right) QW. A matrix element is obtained from the in-
teraction energy, linearized in the displacements, between

I(V) =— dt[e" ' "(HT (t)HT+(0))

(2)

where HT (t) = e' ' ~"HT+e ' ' ~" The Hamiltonian
Ho in Eq. (1) is an example of an exactly solvable
independent-boson model [10]. In writing down the
Hamiltonian (1) we have assumed that the tunneling elec-
tron remains at rest when exciting MP's. As a conse-
quence the interactions with diferent magnetophonons
are independent, which is essential for the solution of

0

I'IG. 1. Schematic illustration of the tunneling process and
the Wigner crystals. An electron tunnels from a lattice posi-
tion on one side of the barrier to an interstitial position on the
other side. This induces relaxation processes carrying away
energy in the form of magnetophonons.

l

the Wigner crystal and the Coulomb potential due to an
added interstitial, or removed lattice electron. The last
two terms in Eq. (1) allow electrons to tunnel between
the wells; Tg~ is the calculated tunneling matrix element

Since the barrier separating the quantum wells is thick,
we can, assuming that the chemical potentials dier by
an amount eV between the two wells, get an expression
for the tunnel current as a function of the bias voltage V
from the Fermi golden rule,
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the model. This no-recoil assumption is reasonable in a strong magnetic field since, as stated earlier, localized wave
packets form a good basis for the single-particle states in the lowest I andau level. The correlation functions in Eq.
(2) are [10]

(HT (t)HT+(0)) = (HT+(t)HT (0)) = v(1 —v)!TI.R C(t), (3)

where

M —M
C(t) = exp —) z [(1+N )(1 —e '

) + N (1 —e' )] (4)

and the additional conditions C(a) = 0 for cu ( 0 and

f& da C(w)/2' = 1. The function g(A) is a measure of
the coupling strength to the magnetophonons,

M —M
(6)

and a „ is the maximum magnetophonon frequency. In
the cases that we consider, we Gnd that Lu is typi-
cally 1—2 meV. At a finite temperature C(w) can be cal-
culated by noticing that C(t) can be factorized into two
parts associated with emission and absorption of MP's.
The Fourier transforms of the two factors can be cal-
culated independently by the integral-equation method,
and C(a) is then found by a frequency convolution. As-
suming that tunneling events at diferent places of the
two-dimensional system are independent, we obtain the
final expression for the tunnel current,

I(V) = —„v(l —v)!TI,It! [C(eV/5) —C(—eV/h)],
C

(7)

where S is the total area of the system.
We first examine the current I(V) at zero tempera-

ture, displayed in Fig. 2. The current is strongly sup-
pressed at small bias voltages, and it exhibits a broad
maximum at a finite voltage U~, k, just as in the exper-
iment. The peak voltage lies in the range 8—10 mV, i.e. ,
a little higher than in the experiment [2], but still well
below the voltage corresponding to the cyclotron energy.

Here (M I. —M R) is the sudden change in the magne-
tophonon coupling due to the tunneling event. To get the
expressions in Eqs. (3) and (4) we consider a region of size
2~l2, and assume that the relaxed electron energies (eL,
and ZR in the notation of Ref. [10]) are equal [11].Physi-
cally this means that the electron systems can relax com-
pletely after a tunneling event and the threshold voltage
is zero The. symbol N in Eq. (4) denotes the thermal
occupation of mode n, N = [exp(~ /k~T) —1]

To calculate the current we must find the Fourier trans-
form C(u) of the correlation function. At zero tempera-
ture C(u) is determined by the integral equation [12]

~max

g(A)C(~ —0)
27r
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FIG. 2. Calculated current-voltage characteristics at zero
temperature at four difFerent magnetic fields. The parameter
values have been taken from the experiment [2]; i.e. , the lat-
tice parameter ao =270 A. (n = 1.6x10 cm ), the quantum
well widths L =200 A, the barrier thickness d =175 A, and
the sample area S =0.0625 mm . The barrier height was 250
meV.

! The peak voltage increases, at least to begin with, with
increasing magnetic Geld. An increased magnetic field
lowers the magnetophonon frequencies and thereby in-
creases the zero-point motion of the WC to which the
tunneling electron couples. We see, however, that the
peak does not shift much at larger magnetic Fields (be-
tween 13 T and 16 T).

When the electron density in the 2D systems is re-
duced while the magnetic field is kept constant, the peak
voltage varies as V~, k 1/ao, where ao is the lattice
parameter. A lower electron density leads to a weaker
Coulomb repulsion between the tunneling electron and
the electrons residing in the 2D electron systems, and
the gap in the tunnel current is consequently reduced.
Our findings here are in agreement with what was re-
ported in Ref. [2]. Moreover, as the electron density is
reduced the current-voltage characteristics behave more
and more classically. By this we mean (i) the I Vcurves-
become more sharply peaked when the density is lowered
and (ii) the peak voltage shows almost no dependence on
magnetic field for small Filling factors (typically v + 1/3).
Our results thus show a crossover from a regime at "high"
filling factors where the magnetic field plays a role in de-
termining the peak voltage, to a regime where the peak
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FIG. 3. The differential conductance dI/dV as a function
of voltage, In these calculations the magnetic field was B =13
T, while the temperature was varied as indicated next to the
curves. The rest of the parameter values are the same as in
Fig. 2.

voltage is set by the interelectron spacing alone.
The low-voltage behavior of the current in our calcu-

lation is approximately given by a power-law singularity
characteristic of x-ray edge problems [12]. If the func-
tion g is constant up to a certain frequency, the current
is determined by I V~i up to the corresponding
voltage. In this calculation g(A) varies rather slowly over
most of the range 0 ( 0 ( ~ „. For very low frequen-
cies (less than a few percent of ~ a„) g exhibits a 0
singularity; however, this does not influence the results
very much. Our calculated I-U curves show approxi-
mate power-law behavior for eV from =0.1Lu „up to
=0.5hcu a„(i.e. , typically V 1 mV), where efFects of
the Brillouin zone edge become important. He, Platz-
man, and Halperin [7] found, using the theory presented
in Ref. [13], the limiting behavior I e +'/+. Their re-
sults should be more reliable than ours at this end of the
spectrum since the Wigner-crystal model cannot give a
completely correct description of the long-range correla-
tions that are involved in the slow relaxation processes.

The effects of quantum fluctuations on the "ordi-
nary" Coulomb blockade have also been treated by
independent-boson models [14,15]. The I Vcurves in-
that case look very different from what we find here. In
the ordinary Coulomb blockade electrons tunnel between
continuous energy bands, and in the absence of electron-
electron interactions the I-V curve is linear. The shakeup
of bosons leads to a pseudogap at small voltages and an
offset at higher voltages. Here, on the other hand, we
consider tunneling between states (the Landau levels)
that are discrete in energy in the absence of shakeup.
Therefore, our I-V curves exhibit pseudogaps followed
by peaks.

At finite temperatures thermally excited magneto-

phonons assist tunneling and thereby reduce, and even-
tually eliminate, the Coulomb gap. In Fig. 3 we display
results for the difFerential conductance dI/dV as a func-
tion of voltage at three different temperatures. We see
that, just as in the experiment, the Coulomb gap vanishes
at a temperature of 10 K. The differential conductance
at zero voltage as a function of temperature behaves as
(dI/dV)v o e "/, where T~ is an activation tem-
perature. We get T&" =8 K at B =8 T, and Tz" =13
K at B =13 T, which are =20% larger than what were
found in the experiment.

In conclusion, we have calculated the tunnel current
between two two-dimensional electron systems in a strong
perpendicular magnetic field. We have done this by
modeling the strongly correlated electron systems by
Wigner crystals. As an electron tunnels, low-energy mag-
netophonon excitations are shaken up. Consequently,
the differential conductance acquires a gap and shows
a broadened peak at a finite voltage. Our results are in
very good agreement with experiment.
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Tote added. —After the submission of this paper two
other Letters related to this work appeared [16,17].
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