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Variational Principle for Confined Quantum Systems
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A new variational principle for the energy eigenvalues of a confined quantum system is presented.
Whereas the exact wave function + must vanish on the bounding surface of the region, the trial function

y in this principle need not obey any specific boundary condition. Calculationally, the method is similar
to the conventional variational method except that kinetic energy turns out to be a weighted average of
—f ltrV ydr and J(Vy) (VVr)dr in the ratio 2: —1. Although the principle is not a definite (minimum)
one, good results are obtained in several examples.

PACS numbers: 73.20.Dx, 03.65.Ge

Advances in quantum-well and quantum-well wire de-
vices have stimulated interest in the problem of calculat-
ing the energy levels associated with a "confined quantum
system, " e.g. , a hydrogenic impurity state confined to a
region of space by impenetrable surfaces. Variational
calculations of the binding energies have been done by,
e.g. , Bastard [1] and Csavinszky and Elabsy [2] for
confinement between parallel planes and by Bryant [3],
Brown and Spector [4], and Oyoko and Csavinszky [5]
for confinement in an infinitely long cylinder (quantum-
well wire). In all of these variational calculations, a trial
function which vanished on the bounding surfaces was
used. The purpose of this Letter is to present a new vari-
ational principle for confined systems in which the trial
function need not vanish on the bounding surfaces. Thus
one could use any convenient set of basis functions
without having to pay attention to the boundary condi-
tion.

Consider a quantum particle which is confined to some
region R of space and governed by a Hamiltonian

H= —V +V(r).
Denote one of its exact energy eigenvalues by E and the
associated (real) eigenfunction by %'(r),

(2)
The boundary condition for this exact eigenfunction %'(r)
is

where dr is an element of the volume R and dS is a vec-
torial area element of the surface X. [The volume in-

tegration is over the region R (up to but not including
the surface X) and does not include any (imagined)
"discontinuity" in y(r) at the surface X.] Because y=y
everywhere on the boundary, the surface integral in (5)
may be replaced by

(6)J dS (yVY —YVy) =„dS (YVY —yVy)

Using Gauss' theorem to convert this back into a volume

integral, (5) may be written in the symmetric form

where the large []brackets denote "stationary value of."
In the conventional (Rayleigh-Ritz) variational princi-

ple, one can use for the average kinetic energy either

[—2''y —(Vtlr) (Vy)+(V E)y']dr-

[.tir—y] d r . (7)

The right-hand side of (7) is quadratic in the error y;
therefore the left-hand side is stationary about y=+.
Dropping this second order term, we obtain the desired
variational principle [6] for the energy E,

E=[E]= f [—2''y —(Vy) (Vy) + Vy']dr

y dr

+(r) =0 for all r C X, (3) yV ydz (9)

where X is the bounding surface of the region R.
Now let ltt(r) be any (real) "trial function" and y(r)

be the corresponding error:

y(r) =e(r)+y(r) .

We emphasize that the trial function y(r) need not obey
the boundary condition (3). Using Gauss' theorem, it is

easy to show that

ly(H —E)@dr =
J dS (yVy —yVy)

or

+„(Vltr) (Vy)dr, (10)

these two being equivalent by Gauss' theorem provided
that y obey the boundary condition (3). In the present
case, with y not necessarily obeying the boundary condi-
tion, the correct kinetic energy expression turns out to be
a weighted average of (9) and (10) in the ratio 2: —l.

Suppose we choose a trial function with K (real) linear
variational parameters C;,

+ y(H E)y dr, —(5)
EC

y(r) = g C;u;(r) .
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tionally the same as the usual Rayleigh-Ritz method.
As a simple illustration of the method, we calculate the

ground state energy of a hydrogen atom located a dis-
tance D from the center of a sphere of radius R; see Fig.
1. Outside the sphere the potential is V =+~. This sys-
tem has also recently been studied by Gorecki and Byers
Brown [7] and by Diamond, Goodfriend, and Tsonchev
[8]. The Hamiltonian (in atomic units) is

FIG. 1. A hydrogen atom inside a sphere of radius R. Its
fixed nucleus is located a distance D along the z axis from the
center of the sphere. The basis functions are expressed in terms
of the spherical coordinates (r, 8) shown.

0= —
2 V —r2 —

1

The basis functions we choose are

u, p(r, 0) =e "r'c os~(8),

with

(i 6)

(i7)

V~i =„u;V(r)u~. dr,

Stj' =J urus dr . '

The kinetic energy matrix,

(14)

Ttj' [O'V uj'+ uJV u;+ (Vu;) ' (Vu~ )]dr, (15)

although symmetric, differs from its conventional form.
With the exception of this slight modification in the ki-
netic energy matrix (15), the entire procedure is calcula-

TABLE I. Ground state energy of a hydrogen atom. The
atom is inside a sphere of radius R; its fixed nucleus is displaced
a distance D from the center. (a) Present work, N =M =3. (b)
Present work, N =M=6. (c) Gorecki and Byers Brown. (d)
Diamond, Goodfriend, and Tsonchev.

Here the u;(r) are a set of K (real) "basis functions. "
Again we emphasize that each individual u;(r), as well as
the sum (11), need not satisfy the boundary condition
(3). Extremalizing (8) with respect to the C; yields a K-
by-K secular determinant for the [E],

det~H; —[E]S, I
=0,

where H; =T,"+VJ. The potential energy and overlap
matrices are (as usual)

a=0, 1,2, . . . , (N —1),

P=0, 1,2, . . . , (M —1).
Each basis function is labeled with two indices (a,p); the
number of basis functions is E=NM. All integrations
over r were done exactly, the upper limit being a function
of 0; the integrations over 0 were then carried out numer-
ically (200 mesh points proving to be sufficient). Results
for several (R,D) with K =9 basis functions (N=M=3;
rows a) and with K=36 basis functions (N=M=6; rows
b) are shown in Table I. Also shown are results of
Gorecki and Byers Brown (rows c) as well as those of,
Diamond, Goodfriend, and Tsonchev (rows d). Our re-
sults compare favorably with previous calculations, espe-
cially those of Diamond, Goodfriend, and Tsonchev.
Note the improvement as K is increased from 9 (rows a)
to 36 (rows b). The proposed variational principle is not
a definite (minimum) principle; therefore the results need
not necessarily improve as K is increased (although many
examples, in addition to the one above, show that they al-
most always do improve with, increasing K). In this
sense, it shares some properties of the Kohn variational
method [9,10] for scattering phase shifts. Another aspect
of the nondefiniteness of the method is that some roots
may occur well below the ground state energy of the sys-
tem. Table II lists all sixteen roots for N=M=4 (K

4.0

3.0

2.0

D =0.1

—0.48972
—0.483 15
—0.483 18
—0.483 18
—0.458 50
—0.423 58
—0.423 58
—0.423 58
—0.18324
—0.122 86
—0.122 86
—0.122 85

D =0.5
—0.488 48
—0.481 02
—0.481 05
—0.481 07
—0.467 51
—0.41392
—0.413 73
—0.41389
—0.061 13
—0.068 89
—0.06607
—0.068 89

D =1.0
—0.484 39
—0.473 42
—0.473 35
—0.473 44
—0.359 34
—0.378 40
—0.377 19
—0.378 41
+0.11741
+0.127 51
+0.158 52
+0.127 52

Source

—4.0
—2.0
—0.8&
—0.410 13*
+0.15
+0.47
+ 1.2
+ 1.3

+2.6
+ 3. 1

+6.5
+6.&

+ 1 1.7
+35.9
+95.8

+ 174.1

TABLE II. Hydrogen atom inside a sphere of radius R=3;
its fixed nucleus is displaced a distance D =0.5 from the center.
The table shows all sixteen roots [E] for N=M =4. The root
labeled "+" corresponds to the true ground state. Note the
three spurious roots below this one.
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x +y ~R, x~O, y~O.
The Hamiltonian within this region is

H= —
~ V 2

(19)

(20)

As a basis set we choose

= 16) with (R,D) = (3,0.5). Note the three "spurious"
roots lower than the one corresponding to the ground
state. Almost always (in this as well as many other ex-
amples), these spurious roots (whose number tends to in-

crease and whose numerical values tend to decrease with

increasing K) are so far below the desired value as to
tnake them readily identifiable.

As a second example, which shows that the method can
also predict excited states, consider a particle in two di-
mensions constrained to the interior of a quarter circle of
radius R= 1. Using Cartesian coordinates, this region is
described by

(p, k)

(2, 1)
(4, 1)
(2,2)
(6,1)
(4,2)
(2,3)
(8,1)
(6,2)

E

26.4
57.6
70.8
98.7

122.4
135.0
149.5
184.7

[El

—2578.2
—514.1

—240.6
26.2
55.6
70. 1

97.1

116.5
133.1

147.4
180.5

TABLE III. Particle inside a quarter circle of radius A=1.
The integers (p, k) are the (angular, radial) quantum numbers
for the exact solution; see Eq. (23). The quantities E are the
lowest eight exact eigenvalues; the quantities [E] are the lowest
eleven approximate eigenvalues, the first three of which are
spu I'Ious.

y„, (x,y) =sin(nnx/R)sin(may/R), (21)

with

n=l, 2, . . . , Ã.

m =1,2, . . . , M.
(22)

These satisfy the boundary condition on the two straight
segments (x =0 and y =0) but certainly not on the
curved segment. The integrations over x were done

analytically, the upper limit being a function of y; the in-

tegrations over y were then done numerically using 200
mesh points. This problem of a particle constrained to
the interior of a quarter circle can, of course, be solved

exactly. Using plane polar coordinates (p, O), the exact
eigenfunctions and eigenvalues are

q p I, (p, 8) =Jp(kpkp/R )sin(p8),

E,, l, =20;I,/R) '.
(23)

(24)

f{(Vy).(Vy)+ Vy']dr

fy'dr
(25)

Here J~ is a (cylindrical) Bessel function of order p
=2,4, 6, . . . , and A~k is the kth positive root of Jz(A, )
=0. Table III lists the lowest eleven approximate ener-

gies [E] obtained using N=M=6 (K=NM=36 varia-

tional parameters). The lowest three of these [E] are
spurious roots; the next eight compare quite favorably
with the lowest eight exact energies F..

Although the trial function y used in this method need

not satisfy any particular boundary condition on the sur-

face X, the Dirichlet boundary conditions (q'=0) on the

exact eigenfunction + were inserted into the analysis in

going from Eq. (5) to Eq. (6). One could instead consid-

er Neumann boundary conditions (n Vq' =0, where n is a
unit vector normal to X) on the exact eigenfunction + in

which case a similar analysis yields
I

which happens to be a true minimum principle. In this
case (Neumann boundary conditions), the correct kinetic
energy expression turns out to be a weighted average of
(9) and (10) in the ratio 0:1 (rather than 2: —1). The
Neumann boundary conditions emerge as the "natural
boundary condition" for this situation, as discussed by
Courant and Hilbert [11]. An excellent discussion of
variational principles in general can be found in the re-
view article of Gerjoy, Rau, and Spruch [12].

Using similar techniques, one may also obtain varia-
tional principles for mixed (Dirichlet along X~ and Neu-
mann along X2 with X~+X2 =X) as well as for "logarith-
mic derivative" boundary conditions (n. Vq/q =p, where

P can even be a function of X). In all of these, the trial
function y need not satisfy any particular boundary con-
dition on the surface X; the boundary conditions are in-
serted into the derivation of the particular variational
principle [e.g. , (8) vs (25)]. [Perhaps here is the major
distinction between the standard (Rayleigh-Ritz) method
and the proposed method. In the former, one uses the
same variational principle but constrains the trial func-
tion to obey the appropriate boundary conditions. In the
latter, one uses a different variational principle (generat-
ed using the boundary conditions) but leaves the trial
function unconstrained; thus all parameters in the trial
function can be variational parameters and none need be
"spent" to invoke the boundary conditions. ]

The author is indebted to S. I. Tsonchev for supplying
a preliminary version of his results and to P. L. Good-
friend for an illuminating discussion concerning atomic
units.
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