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A useful physical model for superfluid turbulence considers the flow to consist of a dense tangle of vor-
tex lines which evolve and interact. It has been suggested that these vortex lines can dynamically recon-
nect upon close approach. Here, we consider the nonlinear Schrodinger equation model of superfluid
quantum mechanics, and use numerica1 simulation to study this topology changing core-scale process.
Our results support the idea that vortex reconnection will occur whenever filaments come within a few
core lengths of one another.

PACS numbers: 47.37.+q, 47.32.Cc, 67.40.Vs

Ever since the original work of Feynman [1], the idea
of treating superAuid turbulence as due to a dense tangle
of (quantized) vortex lines [2] has been very attractive.
The organized pattern of vortices which appear, for ex-
ample, during the rotation of the superAuid can become
a chaotic web of interconnected lines, greatly increasing
the Aow resistance. It remains a challenge, however, to
characterize this state in a manner which would enable
the calculation of Aow behavior as a function of system
parameters.

In a set of pioneering papers, Schwarz [3) introduced a
numerical simulation technique to address this issue
quantitatively. The hydrodynamics of liquid helium is re-
duced to the tracking of a set of vortex lines which evolve
under the locally induced flow [4], as well as a frictional
force due to interactions with the normal Auid. In addi-
tion, he assumed that nonlocal terms which become im-

portant as a piece of vortex filament closely approaches
another such piece (or the system boundary) would lead
to vortex reconnection. In fact, this reconnection mecha-
nism is essential in sustaining the vortex tangle state.
The success of this approach in explaining experimental
findings has been reviewed recently by Donnelly [5].

The purpose of this paper is to provide a detailed calcu-
lation of vortex reeonnection events, lending support to
the aforementioned ad hoc assumptions. To do so re-
quires a microscopic quantum mechanical model of
superfluid helium, since it is on the core length scale that
the relevant dynamics takes place. The simplest such
model is the nonlinear Schrodinger equation for the boson
wave function [6,7]

ih = — V 4'+ (vp~%'~ +w)+,8+ h'
2

Bt 2m

where the nonlinear term arises due to the boson-boson
repulsion. In this language, a vortex is a two-dimensional
solution of this equation of the form +p=f(r)e'~, in cy-
lindrical coordinates, where f 0 as r 0 and f 1 as
r ~ [Sl. The superfluid velocity is given by v=hf
xrn 'Vp, which upon integration at large r leads to the

quantized circulation I =fdl v=2 thr/m. Needless to
say, this model does not accurately represent all of the
relevant quantum mechanics that could be taking place in

a vortex core; nevertheless, we argue that the basic regu-
larization needed for the recombination process is indeed
present in Eq. (1), and therefore our results capture the
true dynamics of this system.

Before proceeding to the details of our calculations, it
is worth mentioning other studies of vortex reconnection.
Within classical Auid mechanics, much efIort has gone
into understanding the role of viscosity in the reconnec-
tion process [9-11]. There has also been work on the
time-dependent Landau-Ginzburg equation [12]. In both
of these cases dissipative eA'ects are all important; in con-
trast, our system is Hamiltonian. Somewhat closer to our
situation is that aA'orded by the evolution of cosmic
strings via the nonlinear Klein-Gordon equation [13];
those systems are Hamiltonian but the dynamics is fully
relativistic, unlike the situation relevant for liquid helium.
Finally, it is possible to directly observe vortex reconnec-
tion by using defect lines in liquid crystals [14].

We proceed by first removing the linear term in w by a
global phase shift, + e ' ' "+, and then rescaling
time, space, and the modulus of + to set the remaining
constants in (1) to unity. In these units, the amplitude f
is within a few percent of unity at a distance r —5 from
the core location [5]. An initial vortex filament
configuration is determined by a core location and a fixed
vorticity direction; the field in the plane perpendicular to
the vorticity vector is just the field of a single vortex with
the given core position; for example, a z vortex with a
core at (xp,yp) gives W(x,y, z) =Op(x xp, y yp). The
complete initial configuration is given by multi p/ying
each of the single vortex fields for the filaments present in

the computational volume. In what follows, we address
the case of two nearby vortex filaments, varying the rela-
tive angle between the vorticity vectors.

To numerically integrate the nonlinear equation of
motion, we use a split-step spectral method [15]. Each
time step is split into two segments, the first of which in-
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tegrates the nonlinear term in real space, and in the
second the Laplacian operator is done in Fourier space.
In each segment the term in question is local, and in fact
the integration amounts to multiplication by an infini-
tesimal phase, insuring the conservation of the normaliza-
tion, f ~

W ~, and of the energy.
The boundary conditions require some care. We use a

periodic box for the physical reason that the vortex cores
must extend to the ends of the system, and any explicit
constraint on their behavior there might prejudice their
motion. Furthermore, periodicity allows us to use fast-
Fourier-transform routines, leading to a very e%cient
parallel computation. Now it is clear that the nontrivial
phase e'~ of the single vortex configuration (for any plane
perpendicular to the vorticity) would wreak havoc with

any direct attempt to impose periodic boundary condi-
tions for our primary box. To resolve this difficulty, we
extend our computation to the region —I, & x,y, z & L;
furthermore, we replace each single vortex line with a set
of four parallel lines of alternating vorticity at positions
arrived at via reflection through the coordinate axes. For
the example of our vortex at (xo,yii), we would add an-
tivortices at ( —xo,yn) and (xn, —yo) and a vortex at
( —xo, —yo). Once this is done, the wave-function phase
is a well-behaved function and the spectral part of the
algorithm can be implemented without difficulty. Of
course, one must take a large enough box and place the
vortex filaments with su%cient care such that the relevant
interactions are not overwhelmed by unwanted boundary
eAects.

According to Schwarz [3], when two vortices approach,
the long-range interactions tend to drive the cores togeth-
er so to be antiparallel (we will refer to this as 180') at
the point of closest approach with some oscillation along
the core. In Fig. 1(a), we show an initial configuration
consisting of a vortex-antivortex pair with sinusoidally
varying core coordinates. In this and other figures we
plot the surface ~%'~ =0.3, to indicate the location and
distortions of the cores. The simulation grid is 64, the
half-box size is L =20, and the average separation of the
cores is 4 units. A mirror-image pair is present in the
lower half-space, 24 units away, but not displayed. As
the simulation progresses the cores merge at the point of
closest approach [Fig. 1(b)], reconnect [Fig. 1(c)], and
then retract from each other [Fig. 1(d)]. The initial and
final stages are dominated by the long distance interac-
tion already present in a vortex simulation [3]: The anti-
parallel cores move downwards in tandem. However, the
intermediate reconnection stage is dominated by the core
dynamics and has not been previously studied. The
numerics have been checked by halving the time step, or
by doubling the resolution to 128 while retaining the box
size and core separations. In both cases no discernable
change is found. We have also checked that the results
are insensitive to the periodic images by a 128 simula-
tion with twice the box size and 48 units separation from
the image below. In this case the core shapes diff'er in

(a)

(c)

FIG. I. Reconnection of antiparallel vortices: (a) initial
configuration, (b) time 3.0, (c) time l0.0, and (d) time 20.
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(a)

FIG. 3. Parallel vortice avoiding reconnection: t&me 20.0
after an initial configuration similar to Fig. l.

(b)

(c)

FIG. 2. Reconnection of 90' vortices: (a) initially, (b t&me

7.0, and (c) time 20.

fine detail but reconnection persists. Other runs with
different initial curvature and equal or closer initial sepa-
ration always reconnect; if the initial separation is too
large, the cores simply translate. Thus the long-range in-
teractions are required to bring the vortices close enough

together for quantum mechanics to act and cause recon-
nection.

Although the 180 configuration is the relevant one for
superfluid turbulence, it is of interest to consider ot er
orientations. n ig.I F' 2(a) we see an initial vortex line

ith 90 relative orientation. Again, t e cores
merge at the point of closest approach, Fig. 2(b), an e
lines eventually reconnect, leading to the configuration
shown in Fig. 2(c). Again, the fact of reconnection is in-
sensitive to our lattice size and to the box size, as long as
the interacting pair are much closer to each other than to
any boundary of the primary computational box, a-
though detailed shapes vary with the distance to the im-

age vortices.
however, theIf the vortices are initially parallel (0'), however, t e

behavior difl'ers. At relatively large initial separation, the
vortices either rotate about their common center or s i e
past each other (Fig. 3), while in initially closer cases the
cores may overlap for a time, then split, merge again, and
so on, without any reconnection. In this case the image
vortices and the periodicity act to keep the pair in prox-
imity. e ave aW h e also studied cases where the initial orien-

eltation is an45 d 135 the former resembles the paralle
case, wit no reconnec

'
n nnection while the latter case recon-

nects in a manner similar to Fig .~ ~ '
s. 1 and 2. The con-

straint of periodicity does not lend itself readily to other
initial orientations, and we have not considered them.

One may ask how the reconnection process can be con-
sistent wit e vin s eh K l

' theorem which states that the circu-
lation around a closed contour moving with the fluid is
conserved in the absence of viscosity. If we consider a
contour C circling one vortex in g.

~ ~

i . 1(a) then unless
'

el at the (symmetric) point of closest approach,is precise y a e
it is carried away from the merger region y e ow
cont~nues o circt ircle the vortex after reconnection. If in-

oint it is not ad-stead C is precisely at the symmetric point it is not a-
vected away, but instead it is trapped in the merger re-
gion. %'hile the nonlinear Schrodinger equation is or-
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mally equivalent to an Euler Quid under the Madelung
transformation [5], it has a singular equation of state
whose pressure includes the term V Jp/Jp, where p
=~t?r~ . [n the core region where p vanishes the pressure
is singular, and the diA'erentiation and manipulations re-
quired to derive Kelvin's theorem are not allowed. Thus
there is no contradiction for any C. However, Kelvin's
theorem does preclude reconnection in the 0 case, be-
cause one can consider a contour circling both vortices
which remains outside the core, with an initial circulation
2?t/m, which cannot change.

To summarize, we have performed the first detailed
simulations of a model for the core-scale interaction of
quantized vortex filaments in helium II. Our results lend
strong support to the hypothesis used in earlier studies of
ensembles of vortices: If two vortices are anywhere near
antiparallel when the large-scale Auid motion brings them
together, they reconnect. Extensions of our methods to
study the behavior of the core during pinning events, and
perhaps the core dynamics of vortex rings, seem to be
feasible calculations for the future.

We thank Klaus Schwarz for helpful discussions, and
the National Center for Supercomputing Applications for
use of their CM-2.
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