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Complex Spatial Patterns on Planar Continua

30 AUOUST 1993

Gemunu H. Gunaratne
Department of Physics, The University of HoustonH, ouston, Texas 77204

(Received 5 March 1993)

The Landau-Ginzburg equations used to describe periodic spatial patterns in two dimensions are ex-
tended to a set of spatiotemporal equations. The extension is determined by the requirement that the
equations of motion commute with translations, reAections, and rotations in the plane. This simple mod-
el produces a variety of complex structures similar to those observed in chemical reactions, ferrofluids,
Rayleigh-Benard convection, and magnetic bubble materials.

PACS numbers: 47.10.+g, 47.20.Ky

Many natural patterns such as animal coats and
beehives consist of arrays that are very regular (often
hexagonal or striped) on the small scale, but are highly
irregular on a large scale. Qualitatively similar struc-
tures have been observed recently in experiments per-
formed on systems as diverse as chemical reactions [1],
ferrofluids [2], and magnetic bubble material [3]. This
Letter is an attempt to understand the apparent univer-
sality and determine the ingredients required to produce
such structures.

Let us first review the theory for periodic patterns. We
focus on isotropic, extended (i.e., the boundaries are far
away) domains. Bifurcations from the uniform state typ-
ically lead to patterns with a unique length scale. The
structures that tile the plane are hexagons, stripes, and
squares. The patterns U(x, t) most often seen in experi-
mental and natural systems are hexagons and stripes (or
rolls) which can be expanded in a hexagonai pianform
[4] as

U(x, t) =

A|�(x,

t)e'""+A2(x, t)e'"'"

+A3(x, t)e'"'*,
where k; are a set of hexagonal basis vectors [5]

r

k~ =kpj, k2 =kp i ——j2 2
(2)

k3 =kP

and A„(x,t) are slowly varying complex functions called
the envelope functions [6]. Here U(x, t) is some field
that characterizes the pattern. For chemical systems it
could be the difference between the local concentration of
a species and its mean value over the plane, while for con-
vective patterns it could denote the Auid surface velocity.
The existence and stability of hexagonal and striped ar-

t
rays can be determined using the Landau Ginzburg-

equations [7,8],

A 1 =f1(x,t) =pA|+aA2A3 —(IA| I

'+pl»l'+ plA31'»1,

A2 f, (x, t) —pA—z+ aA3A| —(IA21'+ plA31'+ plA| I '»2, (3)

--hexagons

—~ ———uniform
4 p.—005' 1

rolls

FIG. 1. The stability domains of the uniform state, hexagons,
and rolls in the Landau-Ginzburg equations. Solid lines corre-
spond to stable states while dashed lines correspond to unstable
states. The vertical axis measures the amplitude of the pattern.
The parameters a and p are chosen to be 1 and 2, respectively,
in all calculations presented.

A3 f3(x t ) pA3+ aA ]A2 —(IA31'+plA & I '+plA21» 3

parametrized by real numbers p, a, and p. Here A and A
denote the time derivative and the complex conjugate of

respectively. The envelope functions for uniform
stripes parallel to the x axis are 2 ~

=const, 8 2 2 3 0,
while those for a uniform array of hexagons are

A 2 A 3 const. Figure 1 summarizes the linear
stability of hexagons and stripes. We note that mixed
states (which correspond to A2=A3&A|) can exist but
are unstable in this model [8].

The Landau-Ginzburg equations are based only on the
symmetries of the interface and thus describe the patterns
on a large class of (essentially) two-dimensional continua.
For example, the fact that k~, k2, and k3 can be permuted
in (1) implies that Eqs. (3) are invariant under any per-
mutation of indices. The reAection symmetry requires
that the dynamics [of U(x, t)] commute with the reflec-
tion ic about the y axis; i.e. , given a pattern U(x, to), the
evolution of the reflected pattern V(x, to) =U(tc 'x, to)
[with envelope functions A„(tc 'x, t 0)] has to satisfy
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V(x, t) =U(tc 'x, t) for t & to. Further, the necessity for
the dynamics to commute with reAection about the x axis
demands p, a, and p to be real. Finally, translation by xo
leads to a pattern U(r 'x, to) describedky the envelope
functions A„(r 'x, to)e ' (n =1,2, 3). The necessity
for the dynamics to commute with translations restricts
the form of the coupling terms (e.g. , the term A2A3 in

the first equation).
Figure 2 shows an extended pattern that develops in a

chlorite-iodide-malonic acid reaction in a thin disk reac-
tor [1]. The reaction, known as the CIMA reaction,
occurs in a gel that is in contact with continuously re-
freshed chemical reservoirs. The system has undergone a
Turing bifurcation that leads to the selection of a natUral
length scale (over which the rate of reaction varies). The
colors of the oxidized and nonoxidized regions are
different leading to the observed patterns. The parameter
values (of Fig. 2) correspond to stable stripes, and it is
seen that local patches of the pattern are indeed striped
(pointing in arbitrary directions). The uniform patches
are arranged in a very complex mosaic, primarily due to
the inhomogeneity of the initial state. In addition, there
are several defects, i.e., points at which the direction of
the rolls is not defined uniquely. Qualitatively similar
patterns have been observed in experiments on ferroAuids
[2], Rayleigh-Benard convection [9], magnetic bubble
materials [3], and in mathematical models [10,11]. The
commonality of the observed patterns in diverse experi-
ments (as well as animal coats'?) demands a model in-
dependent description.

The absence of spatial coupling in (3) implies that each
point evolves independent of its neighbor. However, the
smoothness of the experimental pattern (except at the de-
fects) suggests that spatial derivatives need to be added
to the description. We determine the form of the spatial
derivatives by requiring that the dynamics commute with
invariants of rigid body motions. In particular, we
demand that the equations of motion commute with arbi-
trary rotations. That is, given a pattern U(x, to) and any
rotated pattern V(x, to) =U(R 'x, to), the dynamics has

to imply that V(x, t) =U(% 'x, t) for all subsequent
times. The required condition can be deduced by analyz-
ing a uniform array of rolls. Rolls parallel to the x axis
are given by Up=a~e' ' ", while rolls oriented at an angle
0 to the x axis can be written as Ug =a ~ e ' ", with
k~(8) = (kosin8)i+ (kocos8) j. Rotational invariance im-
plies that a~ is independent of 8. The solution Us can be
expanded in the original basis (k~, k2, k3) using envelope
functions

lkkI X
A~ =a~e ', 22=23 0, (4)

with hk~ =k~(8) —
k~ =kosin8i —ko(1 —cos8)j. What is

needed then is a combination &~ of spatial derivatives
that will satisfy the condition O~e' ' "=0. It is easy to
check that

Jl 1
Cli = k). V — V

2kp
(5)

t)A ) =f) (x,r)+ yO)A )+ v02A2C33A3,

t) A2 f2(x, &)+ y&2A2+ v 3A3+IA I

t)t A 3 f3 (x, & )+ yi-j3 A 3+ vt-j
~ A i i-j2A 2,

(7)

o„being the complex conjugate of &„.For the rest of the
Letter the model (7) (with parameters y and v) will be
referred to as the yv model.

Some comments are in order. Given a pattern U(x, t),
the envelope functions for the rotated pattern U(% 'x, t)
are A„(% 'x, t)e' " [12]. It follows from (6) that the
dynamics given by the yv model commutes with arbitrary
rotations, as was required all along. Second, terms such
as i&~A~ and i(A2&3A3+A302A2) can be added to the
first of Eqs. (7) (with corresponding terms in the other
equations) without violating the symmetries. However,
they can be scaled away by a suitable redefinition of kp
and are thus ignored. Finally observe that when v=0,
(7) can be derived from a variational principle, t),Ak= —B(fdxdy X)/8Ak with

3

L = —P g ~A„~ —a(A )A2A3+A /A2A3)
n 1

1
3 3

+ —Z IA. I'+p g IA. I'IA I'+y g ll:i„A„I'.

is the simplest such combination. Defining h, k2, h, k3
and CI3 analogously, we see that for n =1,2, 3

(6)
We are thus motivated to introduce a spatially dependent
extension of the Landau-Ginzburg equations,

FIG. 2. A chemically turbulent pattern from the CIMA re-
action (Ouyang and Swinney). The dark (light) regions of the
figure correspond to the reduced (oxidized) states of the system.

(8)
Thus the last terms in (7) are required to capture non-
variational effects on pattern formation.

As in Eq. (3), hexagons and rolls are stable in the yv
model. However, unlike (3) there is a band of parame-
ters (much like the Eckhaus band) within which the
mixed states are stable. These correspond to rhombic
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patterns of the interface which have been recently ob-
served in the CIMA reaction [13] and in numerical mod-
els [14].

Equations similar in form to (7), but with C3„approxi-
mated by k„Vhave been introduced in Ref. [15]. Quali-
tative properties of uniform states such as the stability of
hexagons and stripes, and the existence of rhombic ar-
rays, will be identical in both models. The diAerences of
the two models will be significant when the rotational in-
variance is important. For example, Eq. (7) will be cru-
cial to the study of domain walls between stripes pointing
in different directions. Since rotations are a continuous
symmetry of the plane, approximations which do not
preserve the symmetry exactly may lead to qualitatively
incorrect patterns. In fact, numerically we find qualita-
tive diA'erences in the behavior of domain walls in the two
models. One key suggestion of this work is that perturba-
tion expansions of any microscopic model should be con-
structed to preserve the relevant symmetries.

The similarity of &„to the derivatives in the Newell-
Whitehead-Segel model [6] suggests that multiple scale
analysis may be used to get &„.This is indeed the case.
On carrying out the analysis to su%ciently high order we
get the derivatives in the combination 0„.For the Swift-
Hohenberg equation [11]one retains the combination &„
at all orders beyond the fifth.

We next describe properties of the nonperiodic states.
Unfortunately, very little analysis can be done for these
complex states and we present results from the numerical
integration of (7). The time evolution is done using the
alternating direction implicit algorithm [16]. Each non-
linear term N[A(x, t)] is expanded to linear order in
iiA =A (x, t + Bt ) —A (x, t ), thus linear izing the equations
in A(x, t+St). The cross derivatives, such as t) Al/
8x tiy, are calculated explicitly. The results presented
here are from the evolution of Ak's on a 32&32 lattice
with periodic boundary conditions. The slow variables Ak
are interpolated to a 128 x 128 lattice on which U(x, t) is
evaluated using (1). The domain is chosen to have a
length of 4x in each direction and ko is 4.0. Each time
step was 0.01 unit, and it was checked in several cases
that smaller time steps do not change the conclusions.

Figure 3 shows a typical pattern from the numerical in-
tegration of a random initial state. Observe the qualita-
tive similarity between Figs. 2 and 3. The parameters
have been chosen so that only stripes (which by isotropy
can point in any direction) are stable. It is seen that local
patches develop into independent arrays of stripes. The
domain sizes in the patterns increase with the diffusion
coefficient y. When the diA'erent domains run into each
other, the isotropy allows for the rolls to bend at the
boundary and join smoothly (as opposed to forming
domain walls). In nonvariational systems (i.e., v&0) the
patterns do not appear to settle down; i.e., they are time
dependent. Close to the onset of stripes (e.g. , p —5) the
pattern is found to evolve relatively fast, while further
away from the onset (e.g., p —10) the evolution is very

FIG. 3. The central contours of the pattern U(x, t) resulting
from the evolution of a random state by (7) with k0=4.0,
a=1.0, p=2.0, y=0. 1, @=6.0, and v= —0.19. The domain is
of length 4x in each direction and periodic boundary conditions
are imposed. The interface U(x, t) is constructed from (I).
The pattern is time dependent, and does not appear to become
stationary.

slow.
For parameters close to the onset of stripes (e.g. ,

p= 5, y=0. 1, and v= —0.2) the pattern can consist of
hexagonal and striped regions that continually invade
each other's domain. However, it appears that the struc-
ture eventually settles to one or the other periodic pat-
terns. Qualitatively similar behavior has been observed in
the CIMA reaction [1].

Figure 4 shows a structure resulting from the evolution
of (7) in the absence of nonvariational terms (i.e., v =0).
In this case the patterns appear to be stationary, even
though U(x, t) exhibits small (—0.1%) Iluctuations due
to the finiteness of bt [17]. Further, the pattern appears
to consist of distinct domains with sharper domain walls
in between. The stripes in neighboring domains form an
angle close to 120 with each other [18]. Similar qualita-
tive properties are observed in patterns on magnetic bub-
bles and ferroAuids (both of which are conservative sys-
tems).

If O~ is replaced by k~ V, the isotropy of the set of
solutions will be broken and local set of rolls will align
in certain preferred directions, producing more abrupt
domain walls. The resulting patterns are qualitatively
diAerent from Figs. 3 and 4. The physics behind the
model (7) is that local regions (whose size is determined
by the dilt'usion length) form arrays of rolls. The isotropy
of the dynamics allows for the bending of rolls at the
boundaries leading to the observed smoothly varying pat-
terns. Thus the complex structures (of Fig. 2, for exam-
ple) are a consequence of the spatial extent of the domain
and the inhomogeneity of the initial state. If one of the
other symmetries is broken, then retaining the exact form
of &„may not be necessary. For example, in rotating
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bitsky, Mike Gorman, Alan Newell, and Ian Melbourne,
This work was partially funded by the Energy Laboratory
of the University of Houston and by the Office of Naval
Research.

FIG. 4. The contours for a pattern U(x, t) resulting from the
evolution of a random state by (7) with the same parameters as
in Fig. 3 except for p =8.0, y=0.2, and v=0. The pattern ap-
pears to be stationary apart from small fluctuations due to the
finiteness of bt. These fluctuations decrease when Bt is reduced.
Notice that the stripes in neighboring domains make an angle
close to 120 with each other.

convection (where the reflection symmetry is absent) ap-
proximating &„byk„.V leads to structures qualitatively
similar to experimental patterns [19].

Similarities seen in patterns forming in disparate ex-
periments demand a model independent description.
What we have proposed here is that spontaneous loss of
translational invariance coupled with the invariance of
the equations of motion under translations, rotations, and
reflections lead to such patterns; see Figs. 3 and 4. Un-
like complex Landau-Ginzburg equations [10] (which
also show patterns like Fig. 4), model (7) preserves the
symmetries of the physical system. The variational and
nonvariational dynamics appear to lead to diAerent be-
havior. The patterns in the variational model are station-
ary, and neighboring domains orient close to 120 from
each other, reminiscent of structures on ferrofluids and
magnetic bubbles. The patterns forming in the nonvaria-
tional model appear to be time dependent, and consist of
curved domains similar to structures produced by the
CIMA reaction. It is important to be able to prove these
assertions from (7) and to determine which of them gen-
eralize to other models. It will also be of interest to
determine if Eqs. (7) are consistent with the rotationally
invariant Cross-Newell equations [18]. Finally, we would
like to know if the form of 0„follows from the generators
of the symmetry group. If so, we will be able to deduce
the form of the amplitude equations in other geometries
(such as in systems with cylindrical symmetry).

It is a pleasure to thank Qi Ouyang and Harry Swin-
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