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Interferometric Detection of Optical Phase Shifts at the Heisenberg Limit
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We show that the uncertainty in the relative quantum phase of two fields propagating in the
arms of a Mach-Zehnder interferometer can be reduced to the Heisenberg limit by driving the
interferometer with two Fock states containing equal numbers of photons. This leads to a minimum
detectable phase shift far below that of any interferometer driven by a coherent light source.

PACS numbers: 42.50.Lc, 04.80.+z, 07.60.Ly, 42.50.Dv

The interferometer is a fundamental apparatus in op-
tical physics whose output signal is sensitive to the rela-
tive phase shift between two fields traveling down sepa-
rated paths. The use of interferometers in optical gyro-
scopes [1] as well as gravitational wave detectors [2] relies
on the ability to resolve extremely small relative shifts in
the two path lengths with the smallest detectable shift
in principle determined by the quantum properties of the
illuminating field. Zero-point fluctuations in the laser
and vacuum ports of the input beam splitter produce
phase difference uncertainty between the fields propagat-
ing down the two paths. These phase fluctuations are in-
distinguishable from genuine changes in the path length
difference of the two arms.

In the case of the two port interferometer with a co-
herent laser field and a vacuum field as inputs, the effect
of zero-point fluctuations in the vacuum on the relative
length measurement is amplified by the mean intensity of
the laser [3—5]. During a measurement interval in which
the laser supplies an average of n photons, the phase dif-
ference uncertainty between the two fields in the inter-
ferometer arms is 1/~n rad. Increasing the strength of
the incident laser source does therefore increase the res-
olution of the device. Huge and expensive laser sources
will, however, be required in order to resolve the small
perturbations expected by the passage of a gravitational
wave.

A possible mechanism for improving the sensitivity is
to drive the interferometer with nonclassical states of
light as the 1/~n level of relative phase fluctuations for
a coherent source is well above the Heisenberg limit of
1/n rad [6]. To approach the Heisenberg limit it is neces-
sary to introduce nonlocal quantum correlations between
the photons in the two arms. One proposed scheme
illuminates one of the input ports by a squeezed vac-
uum to reduce the vacuum fluctuations in the appropri-
ate quadrature [3]. An alternative method is to coher-
ently drive the optical fields with two strongly correlated
atomic transitions [7].

In this paper, we show that the Heisenberg limit of sen-
sitivity can be realized by driving the interferometer by
two fields with no amplitude difference noise. Since the
amplitude difference and phase difference between opti-
cal fields are Heisenberg conjugate variables, the quan-

turn phase difference between these input fields is uncer-
tain. We shall show, however, that the relative phase un-
certainty between the output fields from the first beam
splitter in the interferometer depends strongly only on
the amplitude difference noise of the input fields.

Consider two classical fields with amplitudes n;„
and P;„and with absolute phases 8;„and P;„ incident
on a 50/50 beam splitter as illustrated in Fig. 1. We as-
sume the beam splitter introduces a phase shift of 7r/2
on reflection. The classical phase difference and intensity
difference between the output fields are given by
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If the input fields have equal amplitude ct;„= Pi„, the
beam splitter produces output fields with zero phase dif-
ference, independent of the absolute and relative phase
noise in the input modes. Alternatively, if the input fields
have equal phase P;„=8;„,the two output ports generate
light of equal intensity.

In analogy to the classical scheme analyzed above, we
consider two Fock states with the same photon number m
as inputs to a 50/50 beam splitter. We want to examine
the nature of the quantum phase distribution of the out-
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FIG. 1. Classical amplitudes and phases for the input and
output fields of a beam splitter.
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put fields from the beam splitter. To do this, we use the
following basis of s+ 1 states ( 8i)

~

l = 0, . . . , s j of well
defined phase [8,9] to describe the distribution for each
mode,

(2)

where j p) ~ p = O, . . . , s} denotes the Fock states. The
rotation between adjacent phase states is e = 2'/(s+ 1).
The corresponding basis for the two mode input field is
then formed from the outer product 8I 8I ) = 8I) 8I ).
We denote the annihilation operators for the two modes
by a and b. The probability that the phase difference
between the output fields is A8, where 48 is an inte-
gral multiple of e, can be found by applying the unitary
transformation for the beam splitter and overlapping the
result with the phase state basis. Finally, tracing over
the possible values for the absolute phase we find
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Figure 2 illustrates this quantum phase distribution for
m = 50 photons. The distribution is well localized
around a phase difference of zero with a width at the
Heisenberg limit of 1/(2m) rad. Since no phase origin is
defined for either of the inputs, the absolute phase of the
output fields must be completely uncertain. I ocalization
of the relative phase variable indicates that the beam
splitter correlates the phases of the photons at its output
ports. For comparison we have overlaid the distribution

p=) „„n)( ' '.
nn'

(4)

Examples of sources of such states are two photon emis-
sion and nondegenerate parametric amplification which
generates the two photon squeezed state.

The coherent mixing of the input fields by the inter-
ferometer is a unitary transformation which depends on
the path length difference between the two arms. If we
denote the path length difference by z, and let the wave
number of the field be k, then the output state which
is measured by the photodetectors can be calculated by
applying the operator exp[kz(atb —bta)/2] to the in-
put state. For the mixed state specified in Eq. (4), the
photons divide equally between the two input ports so
that counting a combined total of 2r photons at the two
output ports specifies the input field as the dual Fock
state r r). Note that this requires measuring the sum
current as well as the difference current from the pho-

Input
A

generated by two coherent states with an average num-
ber of 50 photons but Poissonian photon statistics. The
width of the resulting phase distribution is much wider
than for the Fock states.

We now want to show how we can exploit this nar-
row phase difFerence distribution produced by Fock states
in an interferometer. To do this we consider our beam
splitter to be the first in a Mach-Zehnder arrangement
as illustrated in Fig. 3. Providing an equal number of
photons is injected into each of the two input ports, the
relative phase uncertainty between the two fields in the
arms of the interferometer will be at the Heisenberg limit.
%'e consider input fields from a system which simultane-
ously produces one photon in each mode. In general this
is described by the density operator
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FIG. 2. (a) Overlap of the output field of a beam splitter

illuminated by two number states containing 50 photons with
the phase diR'erence states. (b) The much larger phase un-
certainty resulting from mixing two coherent states of mean
50 photons at the same beam splitter.

FIG. 3. The layout of a Mach-Zehnder interferometer. The
sum current from the photon counting detectors Pl and P2
contains information about the total number of photons ar-
riving in the input ports A and B. The difFerence current con-
tains information about the relative length of the two possi-
ble paths from the 50/50 beam splitter Bl to the 50/50 beam
splitter B2. Ml and M2 are reflecting mirrors.

1356



VOLUME 71, NUMBER 9 PHYSICAL REVIEW LETTERS 30 AUGUST 1993

0. 16 0..015 I I I I I IIII I I I I I IIII I I I I 1 1111 I I I I I 111 0..04 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

Modes

0. 12

as 0.08
0

0

0.04

c5

0
9

0 I I I

10 10 10-'

5 Modes

0..08 I I I I I IIII I I I I I I IIII I I I I I III

I I I IIII I I0
10 10

Llilll I I I I I I IInh.

10

10 Modes

0..15 1 1111 I I I I 1 1 111 I I I I 1 1 111 I I I I I 1 11

0
—30

0
C4

I I I I I IIII0 I I I I I II ( I I I I I IIII I I IIIII I I I I I I 111 I I I I I IIII I \ I I l Ill0

Photon Number Difference 10 10 10 10 10 10

I IG. 4. The probability distribution for the photon number
difFerence between the two output fields of a Mach-Zehnder
interferometer. The input field was a dual Pock state with
each input port receiving 5000 photons. The relative phase
shift between the arms was 10 rad.

Phase Difference (radians) Phase Difference (radians)

FIG. 5. Simulated probability distributions for the path
length difFerence for a Mach-Zehnder interferometer contain-
ing 1, 2, 5, and 10 modes. The peaks of the distributions are
around the actual path length difFerence of 10 rad and be-
come narrower as information from more modes is combined.

todetectors. An alternative method with similar results
is to use a pulsed scheme with very nearly the same pho-
ton number from pulse to pulse [10]. The minimum de-
tectable phase shift is determined primarily by the mean
illuminating field and is not sensitive to small fluctua-
tions in the input intensity.

The probability distribution for the difference in the
number of photons 2q measured at the two output ports
for a phase difference kz is given by

P(2q~kz) = (r-qr+q e~E"~-~'-l „) (5)

P(2q~kz) = J,'(kzr), (6)

where J denotes the Bessel function. This is illustrated
in Fig. 4 for r = 5000 photons and a phase difference
of kz = 10 s rad. The width of this distribution is of
order ~q~ ( kzr This refiects th.e fact that the relative
phase noise in the arms is only limited by the Heisenberg
uncertainty principle. We are therefore able to detect
phase shifts close to the Heisenberg limit. To see how
this might be done in a practical device, we shall now
consider the dependence of the photon number differ-
ence distribution on the relative path length between the
two arms. We shall see that we can derive information
about the phase shift from the difference current between
the photodetectors. The probability distribution for the
relative path length after measurement of a particular

If the path length difference is zero the interferometer
transmits the input states without modification which
leads to a zero photon number difference for the dual
Fock state input. An imbalance in the photon number
difference indicates a nonzero path length difference for
the two arms. For q (( r the probability distribution for
the difference count reduces to

photon number difference, P(kz~2q), is given by

P(kz~2q) = P(2q~kz)P(kz) .
1

P 2q
(7)

The fraction 1/P(2q) is a normalization factor and P(kz)
denotes the prior knowledge about kz. Note that in-
formation from several spatially independent modes in
the interferometer can be combined. In Fig. 5, we illus-
trate possible probability distributions for kz after com-
bining the results of 1, 2, 5, and 10 modes. The proce-
dure adopted is as follows. We consider a Mach-Zehnder
interferometer with a phase difference corresponding to
10 rad. Each input mode is taken to be in a Fock state
containing 5000 photons. Using the probability distribu-
tion in Eq. (6) and a random number we then simulate a
particular photon number difference between the detec-
tors at the output ports. Applying Eqs. (6) and (7) we
generate a probability distribution for kz. For simplicity
we have assumed a flat prior for the first mode. Infor-
mation from subsequent modes is combined by updating
the prior.

In Fig. 6(a), we simulate the measurement of a phase
shift of 10 rad by a five mode interferometer for various
amplitudes of the input dual Fock states. For each choice
of the input field strength, we select a particular photon
number difference for each mode. Using these simulated
measurements we construct the probability distribution
for the relative path length and calculate the mean value
and standard error. Providing the total photon number
is greater than the Heisenberg limit of 1000 photons, the
phase shift can be distinguished from the zero position
of the interferometer. In Fig. 6(b), we show a similar
simulation for a classical interferometer. Injected into
the input ports are a vacuum field and a coherent laser
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ing less than 10 photons during the detection period,
most measurements record no photons in the dark port
and the phase shift cannot be distinguished from zero.

We have presented a new scheme for measuring phase
shifts at the Heisenberg limit. The important property of
the input field is found to be equal numbers of photons
in the two ports. If this is satisfied nonlocal quantum
correlations are generated between the fields in the two
arms of the interferometer. This allows greater resolution
than for any interferometer driven by a coherent field.
Although the two mode squeezed state satisfies this re-
quired input field criteria, the most energy eKcient state
is the dual Fock state.

This work was supported by the Royal Society.

FIG. 6. (a) Simulations of the measurement of a phase shift
of 10 rad for a five mode interferometer driven by dual Fock
states of various amplitudes. We plot the mean value of the
probability distribution for the phase shift derived from the
simulated measurements and use error bars to illustrate the
standard error. Note the phase shift is distinguishable from
zero for input photon numbers down to the Heisenberg limit
(dotted line). (b) As for (a) but with the interferometer driven

by a coherent field (see text). The phase shift is resolved only
if the input intensity is above the classical limit (dotted line).

field. The zero position of the interferometer is adjusted
so that no photons exit from one of the output ports for
zero phase shift. The phase shift of 10 rad is then
detected by the presence of photons in this port. The
result of the simulation shows that the classical driving
field must be significantly stronger in order to detect the
relative path length change. For a coherent field supply-
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