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Coherent Population Trapping States of a System Interacting with Quantized Fields
and the Production of the Photon Statistics Matched Fields
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I calculate the coherent population trapping states of a three-level system interacting with two quan-
tized fields. I show that such trapping states have novel properties. For example, I show that the trap-
ping states for a A system involve the production of radiation fields with matched photon statistics. I dis-
cuss a method for producing these trapping states. For a ladder system, the trapping states even lead to
the nonclassical character of the radiation fields.

PACS numbers: 42.50.Hz, 42.50.Lc

The coherent population trapping states of a A system
interacting with two coherent fields applied on different
transitions are well known [1-6]. These are the station-
ary states of the Hamiltonian which remain nonevolving
in the presence of the radiative relaxation of the system.
Thus a collisionless A system irradiated by two intense
fields can lead to a nonevolving state under certain condi-
tions on the detunings and relaxation parameters. Such
trapping states have been extensively studied and have
been utilized in a number of different contexts such as
lasing without inversion [7,8] and the induced transparen-
cy of the medium [9,10]. In the previous studies the driv-
ing fields have been treated classically and thus the
external fields [11] are taken to be prescribed and unde
pleted in the process of interaction. It would be impor-
tant to understand the dynamics of the coupled atom-field
system by including the evolution of the fields. Thus one
has to investigate the possibility of the trapping states of
quantized fields interacting with atoms. This would also
be necessary in the context of nonclassical fields interact-
ing with atoms, which leads to some unusual properties

In this Letter I derive the coherent population (to be
abbreviated as CPT states) trapping states of a A system
interacting with two quantized fields. I demonstrate the
connection and relevance of such trapping states to recent
ideas on the amplification without inversion [13],
transparency, and matched pulses [101. I further demon-
strate how one can produce radiation fields with not only
matched amplitudes but with matched photon statistics
Finally I present some results for other types of three-
level systems. The trapping state in, say, a ladder system
can even exhibit nonclassical characteristics.

Consider the interaction of a A system with a two-
mode quantized field. Let the mode with frequency co,
(rob ) characterized by the annihilation and creation
operators a and a t (b and b t) interact with the transition
~I) ~3) (~1) ~2)). In the interaction picture the total
Hamiltonian can be written in the form

H = I1 (g a ) 1)(3) +gb b [ 1)(2 )
+ H.c.)

+ ha)( I&(1[+h(a) —A2) )2&&2J,

where g's are the coupling constants and 5's are the de-
tunings,

E) Ei —E2
h, ~

= —m„h2- —cob, E3——0. (2)

If the fields a and b are treated as classical prescribed
numbers a and P, then in the special case A~ =Az the
state

I@0)=~(gbPI3& gaal2&)

is an eigenstate of H, :

H, ~yo) =0; H H„a a, b P.

(3)

(4)

~y& -Ã(gbP~3) —g, a)2)) q(z) z, d'z.
a

(7)

Here a, P, and q(z) are unknown parameters to be fixed

by the time evolution of the system. The states (7) are
the CPT states of the quantized system. These states are
stable against spontaneous emission just like the state
(3). The classical solution (3) is obtained from the quan-

In (3) Ã is fixed by normalization. The state (3) is
stable against spontaneous emission since both the states
~2) and ~3) are stable states. Thus the state (ye) does not
evolve in time. The situation is different if one includes
effects of collisions [14] and finite temperature.

I now derive the CPT states of the quantized Hamil-
tonian (1). I impose the condition h~ =hz and try a solu-
tion of the form

~y) JV(gbp(3) —g, a[2))(yf), (5)

where a and p are unknown coefficients and where
~ yf) is

the wave function corresponding to the modes a, b of the
field. On substituting (5) in the eigenvalue equation
H

~ y) =0, I obtain the condition

(aP —ba)
~ yg& =0.

The general solution of (6) can be obtained in terms of
the coherent states [15] ~z„zb) associated with the two
modes of the field. Thus I find that the most general
solution to the eigenvalue problem H

~ yr) =0 is
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tized result (7) by ignoring the dynamic evolution of the fields. This is achieved by choosing q(z) =8 (z —a).
I next examine some general characteristics of the CPT states of the quantized system. From (7) the reduced density

matrix for the field modes is found to be

p' ' = d'z1d'z2q(z1)q*(zz) z 1, z2,a ' a

from which density matrices for modes a and b can be obtained. In the special case when P/a =P*/a* =1, one gets

(9)

H= —g, (a+ac ' ')A, gb(p—+be ' ")Ab+H. c. ,

p(') =
J d zid z2q(z1)q*(z2)lz1)(z2lexp(zlz2 —

2 Izil —
2 Iz2I ) -p

Note that (9), in general, represents a mixed state and
that the photon statistics of the tivo modes becomes
matched. Note further that in general

(f)~ (a) (b) (10)
~a a l~ ~b ~b ~2 ~The possible exception is when q(z) =6 (z —zo). Thus

the two modes become correlated.
These general considerations give us a whole class

the CPT states of the quantized system. The values
the unknown a and P and the function q(z) can only
fixed by the initial conditions and by the physical situ
tion at hand. In order to illustrate the utility of the ide
on the trapping states of quantized systems, I consider e
plicitly some cases and also establish connection wi

some recent works.
I consider a complete quantum treatment of the mo

system shown in Fig. 1(a). A semiclassical description
this model has been given by Harris [10]. I will assu
that the fields on the two transitions have large cohere
components which can be treated semiclassically. I w

further assume that these components are resonant wi

the respective transitions. The quantized modes m
have diferent frequencies. In the interaction picture t
Hamiltonian for this system can be written in the form

where g, and gy are the coupling constants. Harris treat-
of ed the dynamic evolution of modes a and b classically and
of proved a remarkable result: The system leads to the gen-
be eration of nonzero steady state fields such that aP =ha
a- even though the sample length may exceed several ab-
as sorption lengths. This happens for all modes such that

We now derive the result of a full quantum cal-
th culation. The density matrix equations for the combined

atom-field system can be obtained using (11) and the de-
del cay of the excited state Ii) to the levels I2) and I3).
of From this equation I derive a master equation [16] for

me the reduced density matrix of the field modes a and b. In
nt the calculations (the details to be presented elsewhere) I
ill treat the coherent components to all orders but I derive
th the dynamical equations to second order in g, and gp. I
ay also assume rapid decay of the atomic excited state com-
he pared to the time scale over which the field evolves. The

final result for the evolution of the field density matrix is

p = —(a tap —apa t) Ig, I'gbpC, ( i8,)—
—(a bp bpa )Ig, l gb—( —a)C, ( —ihb)e' ' ' +H.c.+ terms with a b, a p. (i2)

The coefficient C, is related to the linear susceptibility [17] of the atomic system driven by the fields a and P and is a
function of the detuning b, . Thus C, will depend on all orders of a and P. This is clearly seen from the equation for the
mean value of a:

&a& = —&a&lg I'gbpc ( ib )+&b&Ig I'gb«( t'~b)e"'

If the difI'erence 8, —
Bh, is large, then the coupling be-

tween a and b modes can be ignored. However, for
6, =6p very interesting results emerge. First of all at the
level of mean fields (13) predicts that

(a)

ga

(b)

&a&P =(b&a . (i4)

Thus apart from a scaling factor one produces fields with
matched amplitudes, a case discussed by Harris in his
semiclassical analysis. Note that in the absence of the
coherence mediated coupling between a and b, the steady
state amplitude becomes zero because no population in-
version is imposed in field propagation. Thus the coher-
ence of the trapping state leads to nonzero and matched

l3&

FIG. 1. Schematic illustration of the energy levels for (a) the
A system and (b) the ladder system, and the diA'erent interac-
tions with the quantized fields.
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fields. The density matrix equation (12) can also be solved analytically and then one can investigate the photon statis-
tics of the generated fields.

Using the conservation laws and the techniques based on the Glauber-Sudarshan P function [15,18], I have found the
following steady state solution of (12):

p= P(z~, z2)~z i, zz)&z~, z 2~d zid zz,

P(z/, z2) =Is z2-(,) zip fO

Pp(gig2)dgid gzB zi —pi+(2) ga Ca+2
gb*Cb

I++ ga a

gb*Cb

H = (g. I
1 &&2

I
a+ gb I 2&&3 Ib+ H.c.) . (i 6)

For the sake of simplicity I assume that the fields are res-
onant with the respective transitions. If a and b are treat-
ed classically with amplitude a and P, then t]ie state

where Po is the P function associated with the input
fields. From (15) we find the following: (a) The solution
is in the form (8) obtained from general considerations
on CPT states of quantized systems. (b) The degeneracy
of the solution has been fixed by the initial conditions.
(c) The system leads to the production of the quantum
statistics matched Pelds. This last result follows from
the overall delta function outside the integral sign in

(15). (d) Note further that if 8,&bb, then the steady
state solution of (12) will be a vacuum state p= ~0, 0)&0,0~ as one would expect from the quantum ver-
sion of Beer's law. I have also obtained the time-
dependent solution of (12) which I do not give here. It
may be noticed that one can produce fields with matched
statistics for all pairs of modes such that 8, =bb The.
frequency of the individual mode is irrelevant. I mention
that a master equation of the form (12) has also been de-
rived previously in the context of a model of amplifica-
tion. The above results for the generation of fields with
matched statistics will also be applicable to this amplifier
model [13].

I finally consider the possibility of trapping like states
in ladder systems. The Hamiltonian for the scheme of
the Fig. 1(b) is

I Wf& =&le.,0& (2i)

The p, content of the state will be fixed by the initial con-
ditions. For a ladder system, the reduced density matrix
equation for the fields can be obtained by following
analysis similar to that leading to (12). This analysis
shows the kind of states [like (21)l that can be generated.

The foregoing analysis [20] shows the remarkable
properties of the CPT states of atoms interacting with
quantized fields. I have also shown how one can produce
such trapping states. I have shown how the idea of the
transparency and matched pulses follows from the ex-
istence of such trapping states. In the foregoing I have
only treated the three-level systems but it is clear how one
can study the coherent population trapping states of a
multilevel system interacting with quantized fields.

The author is grateful to E. Arimondo, S. Harris, and
M. O. Scully for discussions on the subject of population
trapping. The author also thanks S. Harris for making
available a preprint of Ref. [101.

Thus the trapping state associated with a ladder system
interacting with a quantized field is the direct product of
the state (17) and the squeezed vacuum state. The state
(17) or (18) is meaningful provided that the relaxation
mechanism is such that it is stable against decay. A more
general solution of (19) can be written in terms of the
two-mode squeezing operator [19] S and an arbitrary
state for mode a:

~ y& =(Pgb ~1&
—a*g,*~3&) (i7)

is an eigenstate of H with zero eigenvalue. However,
such a state is not stable against radiative decay unless
both states (I) and ~3& do not decay. For the quantized
Hamiltonian (16) the states with H~y) =0 can be ob-
tained by choosing

( y&
= (Pgb I I ) —a*g.* I 3& ) I yf), (18)

where
~ yI& is the solution of the eigenvalue equation

(Pa t —a*b)
~ yf& =0. (19)

One possible solution to the eigenvalue problem is the
squeezed vacuum state [19]

Il

~ yI& =g, ~n, n&. (20)
n
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