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Probing Bose-Einstein Condensed Atoms with Short Laser Pulses
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We propose a method of probing a system of cooled atoms in a trap using short laser pulses.
Above the critical temperature for Bose-Einstein condensation such a system scatters very weakly.
Coherent scattering occurs primarily in the forward direction. Below the critical temperature, the
number of scattered photons increases dramatically and the scattered light is emitted in the solid

angle determined by the size of the condensate.

PACS numbers: 32.80.Rm, 42.50.Hz

Recently there has been a great deal of interest in ex-
perimental realization of the Bose-Einstein condensate
(BEC) [1-3] in various systems of trapped and cooled
atoms [4]. Apart from the fundamental question of the
possibility of achieving sufficiently low temperatures and
high densities to obtain BEC, there is another question
concerning detection and observation of the condensate.

Obviously, the latter goal may be realized by scattering
light on the system of cooled atoms. Until now, quan-
tum optics of BEC has not been studied in great detail
[5,6]. Politzer considered the problem of scattering of
weak light on the condensate at T ~ 0. In an infinite
trap, atomic and photonic degrees of freedom mix, giv-
ing rise to a gap in the excitation spectrum. Because of
this gap the resonant light will be strongly reflected back
from the sharp boundary of the condensate. Note, how-
ever, that these conclusions would be significantly mod-
ified in more realistic conditions, i.e., in a trap of finite
size and no sharp boundaries [7).

The aim of this Letter is to investigate another limiting
case of scattering of short but intense laser pulses on the
system of cooled atoms in a trap. In particular, we con-
sider laser pulses of the area of multiples of 2. The area
of the pulse is defined as an integral of the slowly vary-
ing envelope of the electric field multiplied by the atomic
dipole moment. When the area is 27K, the atom cycles
K times between the excited and ground state. We show
that above the critical temperature for the Bose-Einstein
condensation, the coherent scattering from such a system
of atoms is very weak and takes place primarily in the for-
ward direction due to the phase matching effects. Below
the critical temperature the number of scattered photons
increases dramatically and the coherent scattering occurs
in a solid angle determined by the size of the condensate.
Even below T, sufficiently short 2w K pulses leave the
system relatively intact, providing a nondemolishing tool
for observing the BEC.

We focus our attention on the range of parameters de-
scribing a magneto-optical trap developed at JILA [1,8].
The potential for the atomic center-of-mass motion in the
ground electronic state can be well described by the har-
monic oscillator potential of the frequency w; ~ (27) x 10
Hz. Note that this potential does not extend to infinity

0031-9007/93/71(9)/1339(4)$06.00

but rather forms a finite barrier of a height of the or-
der of (27)2 x 10* Hz or more. Nevertheless, several
thousands of degenerated harmonic oscillator energy lev-
els can be formed within the trap. By exploiting the
evaporative cooling technique, the trap can store about
N = 108 cesium atoms, which will interact with the res-
onant light of frequency ~ (27)4.0 x 1014 Hz. A typical
photon recoil energy will then be ~ (27)2 kHz, whereas
the natural linewidth (HWHM) ~v ~ (27)2.5 MHz. Char-
acteristic lengths in this system are the size of the ground
state wave function, a ~ 10~5 m, and the resonant wave-
length, A ~ 800 nm. Both of these are, of course, much
larger than the size of the electronic wave function, i.e.,
Bohr radius ag =~ 5 x 107! m. It is worth stressing that
both w; and @ = 1/+/2Mw;, where M is the atomic mass,
can be controlled in the experiment. In general, atoms
in excited electronic states move in different potentials
from that characterizing the ground state. Although the
shape of those potentials plays a very important role in
the case of scattering of a weak, cw laser light (7], it will
turn out to be not as essential in the scattering of short
laser pulses. We will assume only that the excited state
potentials are smooth and vary on a similar scale to that
of the ground state potential, so that the corresponding
level spacing is of the order of 10 Hz or even less.

The Hamiltonian governing the evolution of the atoms
in the trap takes the following second quantized form in
the rotating wave approximation (RWA) and in atomic
units:

H= Z Edglgn + Z(Ef;1 +wo)e,em
n m
+ Z / d3k ck aLuaku
m
+3°3 / d*k o(k) [nm (k)ghal ,em- €xy + Hel
n,m p
(1
where g,, g}, denote atomic annihilation and creation
operators for the nth state of the ground state poten-

tial. For a rotationally invariant potential, n is actually
a triple index (ng,ny,n;). The corresponding energy is
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Eg = wi(ng +ny +nz). en, €, denote atomic annihila-
tion and creation operators in the excited state potential.
The corresponding energies are E2, + wy, i.e., are shifted
by the electronic transition frequency. We consider here
the case of the transition from an s state to a p state
and therefore e,,’s and e,;fl’s have a corresponding vec-
tor character. This is not the case of the transition in
cesium (6S1/2F = 4 to 6P3/,F = 5), but the charac-
ter of the transition is not essential for our conclusions.
ax, and a;r( denote annihilation and creation operators
for photons of the momentum k and linear polarization
exy (4 = 1,2). All the introduced operators fulfill stan-
dard bosonic commutation relations. The coupling o(k)
is a slowly varying function of k related to the natural
linewidth v = (87%k2/3c)|o(ko)|?, with kg = wo/c. Fi-
nally, 7nm (k) are matrix elements for the transition from
the nth state of the ground state potential to the mth
state of the excited state potential,

T (K) = (nle”"®|m). (2)

The above Hamiltonian includes that part of the strong
resonant atomic interactions due to electronic dipole-
dipole forces and exchange of transverse photons [9]. We
neglect, however, other forces that may play a crucial role
in atomic collisions.

Suppose the system is driven by a short coherent laser
pulse. If such a pulse is strong enough and short enough,
we may neglect spontaneous emission effects and substi-
tute the electric field operator entering the interaction
Hamiltonian in Eq. (1) by a c-number. The pulses we
intend to use should have duration < 300 ps or shorter,
i.e., width v ~ 3 x 109-10!! Hz. The first estimate
shows that indeed 1, > v, i.e., the spontaneous emission
may be legitimately neglected during the time of inter-
action of the pulse with the atoms. Note, however, that
this estimate might be misleading, since the atoms will
respond collectively and the effective spontaneous emis-
sion rate might thus be greatly enhanced [10]. We will
therefore have to check our assumption self-consistently
in the following, to assure that the total number of emit-
ted photons Niot is much smaller than N.

Assuming that the spontaneous emission is slow
enough we substitute the electric field operator multi-
plied by the absolute value of the electronic transition
dipole moment by

Q . )
de) 3 Z/diﬂk o(k, ’u)emk-R—wkt’ (3)
7

where 2 is a peak Rabi frequency of the laser pulse. The
function g(k, ) describes a (k, u)-dependent envelope of
the pulse. We assume that the pulse has the form of a
plane wave packet moving in the kz direction with the
central frequency w; and the linear polarization €z, so
that
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Q .
dE® - ZerFlyi(t —ky - R/wp)|ekeRoiort,  (g)

Here, F(yrt) is the temporal envelope of the pulse cho-
sen to be real and assumed to have a bell shape and a
maximum at t = 0 equal to 1.

Note that to obtain Eq. (4), the (k, u)-dependent en-
velope o(k, 1) must change on a scale of momenta of
the order of v /c ~ 10-300 m~!. On the other hand, the
characteristic scale on which the matrix elements 7, (k)
change 6k is of the order of 1/a ~ 10° m~! for low n. As
we go to higher n’s, 6k scales as 1/4/n, so it becomes
102 m~! for the highest energy levels that are still avail-
able in the trap. Since 6k > «r/c for all v, in question,
we may thus safely substitute k by k;, inside 7,,, (k).
With this substitution, using Eq. (3) and Eq. (4), the
Hamiltonian (1) becomes

H=Y Elglgn+> (B +woleten
n m
Q .
+2F o) (exp(zw) Sahes o+ H.c.) )

where we have introduced a new notation for annihilation
and creation of wave packets of excited states created
from the nth state of the ground state potential,

f, = Znnm(kL)em- (6)

Note that these annihilation and creation operators de-
scribe independent wave packets, i.e., fulfill the standard
bosonic commutation relations [fZ, ff:,lf] = bnnbaar,
with a,a’ = x,y,z. Moreover, since we assume that
the excited state potentials are flat, the energy E¢, will
not vary much for the states in question; for each of
the wave packets f,, f,f, it can be approximated by
Eg + wo + k% /2M. This assumption is equivalent to the
statement that the atoms in the excited state potential
will not move within the duration of the laser pulse.
The Heisenberg equations are now linear. Thus at the
resonance, wr, &~ wo + k% /2M, and in the rotating frame

gn — e Bitg, £, — e*Ertf, they take the form

. Q
gn= “zEI(VLt)eL 3
(7)
. 0
er -f,= —zgf(th)gn.

These equations may be easily solved analytically for any
pulse envelope

gn(t) = gn(—00) cos[A(t)] — ier - £,(—00) sin[A(t)],

(8)
€1 - fo(t) = —ign(—o00) sin[A(t)] + €L - £.(—00) cos[A(t)],

with A(t) = (©/2) f:oo F(vyLt')dt' and other components
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of f,, intact. The physical picture of the discussed process
is now the following: Each of the nth levels of the ground
state oscillator (when populated) creates an independent
wave packet f,,. The population oscillates coherently be-
tween the ground state and nth wave packet. The system
behaves as if it consists of a set of independent two-level
atoms coherently driven by the laser pulse. If the area
of the pulse is a multiple of 27, the system will be left
in the same state after the pulse is gone as it was before
it came. Obviously, as n increases, the approximations
we have made become worse, but they should hold very
well for the lowest available 104 states of the ground state
potential.

Of course, in reality the atoms will scatter photons
since 7 is nonzero. The resonance fluorescence (RF) from
a single atom driven by a short pulse has been studied by
Rzazewski and Florjadiczyk [11]. They have shown the
RF spectrum in such a case consists of 2K — 1 peaks,
provided the pulse area is 2w K. Physically, multiple
splitting results from the temporal interference effects,
as photons emitted during the interaction with the pulse
interfere with each other. These results were then gener-
alized to include nonzero detunings, dissipation, and var-
ious pulse shapes (hyperbolic secant, exponential pulses,
chirped pulses, etc.) [12]. The total number of photons
emitted in such a process is typically of the order of v/vr.

To calculate the properties of the scattered light from
the system of trapped atoms we come back to the full

Cin(k, 1) = Seon(®@) D 6N |Mn(k — kL)[* + Scon(w)

where we have defined the corresponding single-atom
spectra as

3 c
Scoh,in(x) = 2 (Eku. . 6L)zwfcoh,in("z:)v (13)

with the normalized form factors W's given below,
o0 2
Wean(e) =73 | [ e cos[A(t)] sin{A(t)]de

— 00

b

(14)
oo ] , 2
Win(z) = 7% / e~ @t sin?[A(t')]dt

— 00

Here Scon,in(tw) are the single-atom spectra which can

Hamiltonian (1) and evaluate perturbatively the spec-
trum of emitted photons as well as their total number.
We assume that initially the ground state energy levels
were populated according to the Bose-Einstein distribu-
tion so that the mean number of atoms in the nth state
was N, = ze PFn /(1 — zePFn), where 8 = 1/kT, z is
the fugacity, and >, N, = N. Below critical tempera-
ture T¢, z = 1 and Ny becomes extensive [13,14].

As in Ref. [11] we define the spectrum C(k,u) as a
total number of scattered photons of the momentum k
and polarization u,

Clle, u) = Jim (aj, (t)asu(®)). (9

After tedious, but elementary, calculations we obtain an
analytic expression for the spectrum that consists of co-
herent and incoherent parts,

C(k, ) = Ceon(k, ) + Cin(k, p), (10)

where the coherent part is proportional to the modulus
squared of the Fourier transform of the mean atomic po-
larization, and take the following form,

2

Ceon (k7 ﬂ) = Scoh(w) s (11)

Z Nn"?nn(k - kL)

with @ = (ck —wr)/vL, whereas the incoherent part can

| be expressed as

SN N + 1) [nnm(k — kz)|* + NSin(w), (12)

n ms#n

m

Ceon(k, ) = Scon(w)

Z (1_—:_";5—“-“—)3 exp (—%aQ(k — kL)2 coth(mﬂwt/2)>
m=1

be found in Refs. [11,12]. For a hyperbolic secant pulse
1/ cosh(yrt) of the area 27, for instance,

Weon(z) = 222/ cosh?(nz/2),
(15)
Win(z) = n22?/ sinh?(nz/2).

The incoherent spectrum (12) consists of three parts com-
ing from quantum dispersion of the occupation numbers
8N?2 = N, (N, +1), processes of creation of the nth wave
packet accompanied by annihilation of the mth one for
n # m, and finally from the single-atom incoherent spec-
trum. The total number of emitted photons is obtained

| by integrating the spectrum, Nioe = 3, [ d*k C(k, ).

For T > T, we obtain
2
. (16)

Note that the range of possible scattering angles is determined by the size of the trap and a temperature-dependent
factor that results from destructive interference of different n terms in the sum entering Eq. (11). As T grows, z — 0
and only the first term in the sum in Eq. (16) remains relevant. We obtain then
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Coon(k, 1) = Scon(w)N? exp [—2a%(k — kr)?/Bw:] . (17)

For T ~ 10 uK, Bw; ~ 5 x 107° and the scattering will
occur practically in the forward direction and will cover
only a tiny solid angle with half angle < 1.0 x 10™%. The
total number of coherently scattered photons becomes
then

3r%/2 4 Bws \5/2 fwr\3
= X N2 (—) . 18
Neot = =575, (2a2k%) L (18)

For N = 108, Nyt will be of the order of 2%N for a
100 ps pulse and (2 x 10~4)%N for a 10 ps one. As we
see, our theory is self-consistent in this high temperature
limit, since Nyt < N.

As T decreases, more and more terms in the sum over
m in Eq. (16) contribute and more and more photons are
emitted. The critical value of Sw; for BEC may be esti-
mated to be (Bw:)e =~ (1.202/N)Y/3 ~ 2 x 1073 [13,14].
Up to a numerical factor of the order of 1, the estimate
(18) may still be used and Nyt > N for a 100 ps pulse,
and Niot = 4% N for a 10 ps one. As we see, our theory is
beyond the limits of its validity for 100 ps pulses. How-
ever, we call to attention the very strong dependence on
a in Eq. (18), for flatter potentials with relatively larger
a, the validity of the theory can be extended easily into
nanosecond pulses. Note also that even at T, most of
the coherently scattered photons will be emitted in the
forward direction and thus no significant scattering can
be observed.

Similar conclusions hold also for the incoherent part
of the spectrum, but the analysis in that case is much
more complicated [7] and we will not discuss it here. The
number of incoherently scattered photons is always of the
order of a few percent of N or less, although they may
be emitted in the full solid angle.

The situation dramatically changes when T < T..
Then the spectrum will contain a new term arising from
the condensate. Assuming that on the mean Ny atoms
form a coherent packet occupying the lowest energy state
with n = (0,0, 0), we obtain for the coherent part

Crrc(k, 1) = Scon(w)N§ exp [—a?(k —kr)?].  (19)

As we would expect, the coherent scattering now covers
a much larger solid angle with half angle ~ 1.0 x 1072,
In a distance of 1 m from the trap the scattered photons
will be about 1 cm off the optical axis. The total number
of such photons also grows dramatically as Ny grows and
T becomes smaller. We obtain
1
2a2k%"

The validity of the theory requires that Ny, < Np. For
a 100 ps pulse this condition holds provided Ng < 107.
For N = 108, Ny will in fact reach this value just below
the critical temperature [No/N = 1 — (T/T,)3]. About

Niot = N2 (20)
YL
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10* photons will be scattered coherently into the solid
angle 47 /aky, as 1 — T/T, becomes ~ 3 x 10~3. For 10
ps pulses, our theory is valid even if all the atoms were
in the condensate.

To summarize, we have demonstrated that by scatter-
ing of short laser pulses of area 2w K we may detect the
onset of the Bose-Einstein condensation. In the regime
of validity of our theory, 2w K pulses leave the system
of trapped atoms virtually unperturbed. This is partic-
ularly true for T > T.. As T becomes smaller than T,
angular distributions of scattered photons as well as their
numbers change dramatically. Scattering of short laser
pulses on systems of trapped atoms thus provides an al-
ternative way of detecting the actual state of the system,
i.e., its temperature, degree of condensation, etc.

We thank all members of the BEC Seminar at JILA
for enlightening discussion and comments. M.L. thanks
JILA for hospitality and financial support of his visiting
fellowship. L.Y. is supported in part by NSF Grant No.
PHY90-12244 through the University of Colorado.

* Permanent address: Centrum Fizyki Teoretycznej, Pol-
ska Akademia Nauk, 02-668 Warsaw, Poland.

(1] C. Monroe, W. Swann, H. Robinson, and C. Wieman,
Phys. Rev. Lett. 65, 1571 (1990).

[2] H. F. Hess et al., Phys. Rev. Lett. 59, 672 (1987); N.
Masuhara et al., Phys. Rev. Lett. 61, 935 (1988).

[3] R. van Roijen et al., Phys. Rev. Lett. 61, 931 (1988).

[4] Special issue of J. Opt. Soc. Am. B 6, 11 (1989), edited
by S. Chu and C. Wieman.

[5] H. D. Politzer, Phys. Rev. A 43, 6444 (1991).

[6] B. Svistunov and G. Shlyapnikov, Zh. Eksp. Teor. Fiz.
97, 821 (1990); 98, 129 (1990) [Sov. Phys. JETP 70, 460
(1990); 71, 71 (1990)].

[7] M. Lewenstein, L. You, and J. Cooper (unpublished).

[8] C. R. Monroe, E. A. Cornell, C. A. Sackett, C. J. Myatt,
and C. Wieman, Phys. Rev. Lett. 70, 414 (1993).

[9] E. A. Power and S. Zienau, Philos. Trans. Roy. Soc. 251,
427 (1959).

(10] Recent calculations performed by us [7] and J. Ja-
vanainen (to be published) indicated that the effective
spontaneous emission rate is of the order of tens of GHz
for the parameters considered here.

[11] K. Rzazewski and M. Florjanczyk, J. Phys. B 17, L509
(1984); E. J. Robinson and P. R. Berman, J. Phys. B 17,
L847 (1984).

[12] K. Rzazewski, Phys. Rev. A 28, 2565 (1983); M. Lewen-
stein, J. Zakrzewski, and K. Rzazewski, J. Opt. Soc. Am.
B 3, 22 (1986); M. Florjaiczyk, K. Rzazewski, and J. Za-
krzewski, Phys. Rev. A 31, 1558 (1985); J. Zakrzewski,
J. Phys. B 19, 2247 (1986).

[13] S. R. de Groot, G. J. Hooyman, and C. A. ten Seldam,
Proc. R. Soc. London, Ser. A 203, 266 (1950).

[14] V. Bagnato, D. E. Pritchard, and D. Kleppner, Phys.
Rev. A 35, 4354 (1987).



